International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 12, Issue 4 (April 2025), Pages: 184-192

----------------------------------------------

 Original Research Paper

Influence of variable thermal conductivity on axisymmetric slip flow in a pipe with a varying radius

 Author(s): 

 Mohamed H. Hendy 1, *, Abaker A. Hassaballa 2, Mnahil M. Bashier 2

 Affiliation(s):

 1Department of General Courses, Applied College, Northern Border University, Arar, Saudi Arabia
 2Department of Mathematics, Faculty of Science, Northern Border University, Arar, Saudi Arabia

 Full text

    Full Text - PDF

 * Corresponding Author. 

   Corresponding author's ORCID profile:  https://orcid.org/0000-0003-1919-1647

 Digital Object Identifier (DOI)

  https://doi.org/10.21833/ijaas.2025.04.020

 Abstract

This study examines wave propagation in elastic orthotropic tubes filled with a uniformly tapered fluid, focusing on the effects of slip velocity variations at the tube wall. A Newtonian fluid flows through tubes with different radii, and microscale gas flows may be influenced by temperature gradients, affecting viscosity and temperature-dependent thermal conductivity. An asymptotic series solution for low Reynolds number flow is employed to determine streamlines, velocity profiles, and variations in amplitude and wavelength of constrictions. A closed-form formula is derived to calculate the pressure drop, improving upon the Hagen-Poiseuille model by accounting for wavelength effects. Axisymmetric solutions to the governing differential equations are obtained under the assumption of no traction on the outer wall surface. Numerical analysis reveals that the slip parameter significantly influences axial and radial velocities as well as temperature profiles, providing insights into fluid behavior in elastic tubes.

 © 2025 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Wave propagation, Elastic orthotropic tubes, Slip velocity, Low Reynolds number flow, Pressure drop analysis

 Article history

 Received 2 October 2024, Received in revised form 25 January 2025, Accepted 25 April 2025

 Acknowledgment

The authors gratefully acknowledge the approval and support of this research study by Grant No. NBU-FFR-2024-1695-03 from the Deanship of Scientific Research in Northern Border University, Arar, KSA.

  Compliance with ethical standards

  Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Hendy MH, Hassaballa AA, and Bashier MM (2025). Influence of variable thermal conductivity on axisymmetric slip flow in a pipe with a varying radius. International Journal of Advanced and Applied Sciences, 12(4): 184-192

  Permanent Link to this page

 Figures

  Fig. 1  Fig. 2   Fig. 3   Fig. 4   Fig. 5   Fig. 6   Fig. 7  

 Tables

  No Table

----------------------------------------------   

 References (34)

  1. Bilal M, Siddique I, Borawski A, Raza A, Nadeem M, and Sallah M (2022). Williamson magneto nanofluid flow over partially slip and convective cylinder with thermal radiation and variable conductivity. Scientific Reports, 12(1): 12727.  https://doi.org/10.1038/s41598-022-16268-2    [Google Scholar] PMid:35882915 PMCid:PMC9325731
  2. Boraey MA and Guaily A (2021). Analytical solution for the quasi-two dimensional non-isothermal fully developed flow of molten salt in a circular pipe. Physics of Fluids, 33(11): 113601.  https://doi.org/10.1063/5.0065313    [Google Scholar]
  3. Chakravarty SI and Sen S (2008). Analysis of pulsatile blood flow in constricted bifurcated arteries with vorticity-stream function approach. Journal of Medical Engineering and Technology, 32(1): 10-22. https://doi.org/10.1080/03091900600700822    [Google Scholar] PMid:18183516
  4. Chow JC and Soda K (1972). Laminar flow in tubes with constriction. The Physics of Fluids, 15(10): 1700-1706.  https://doi.org/10.1063/1.1693765    [Google Scholar]
  5. Chu Z (2000). Slip flow in an annulus with corrugated walls. Journal of Physics D: Applied Physics, 33(6): 627-631.  https://doi.org/10.1088/0022-3727/33/6/307    [Google Scholar]
  6. El‐Khatib FH and Damiano ER (2003). Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube. Biorheology, 40(5): 503-522.  https://doi.org/10.1177/0006355X2003040005003    [Google Scholar]
  7. Elshahed M (2004). Blood flow in capillary under starling hypothesis. Applied Mathematics and Computation, 149(2): 431-439.  https://doi.org/10.1016/S0096-3003(03)00151-6    [Google Scholar]
  8. Fusi L, Housiadas KD, and Georgiou GC (2020). Flow of a Bingham fluid in a pipe of variable radius. Journal of Non-Newtonian Fluid, 285: 104393.  https://doi.org/10.1016/j.jnnfm.2020.104393    [Google Scholar]
  9. Hemmat M and Borhan A (1995). Creeping flow through siunoidally constricted capillaries. Physics of Fluids, 7(9): 2111-2121.  https://doi.org/10.1063/1.868462    [Google Scholar]
  10. Kakaç S, Yazıcıoğlu AG, and Gözükara AC (2011). Effect of variable thermal conductivity and viscosity on single-phase convective heat transfer in slip flow. Heat Mass Transfer, 47(8): 879–891.  https://doi.org/10.1007/s00231-011-0851-3    [Google Scholar]
  11. Khalafvand SS and Han HC (2015). Stability of carotid artery under steady state and pulsatile blood flow: A fluid-structure interaction study. Journal of Biomechanical Engineering, 137(6): 061007.  https://doi.org/10.1115/1.4030011    [Google Scholar] PMid:25761257 PMCid:PMC5101041
  12. Koplik J (1982). Creeping flow in tow-dimensional networks. Journal Fluid Mechanics, 119: 219-247.  https://doi.org/10.1017/S0022112082001323    [Google Scholar]
  13. Kotorynski WP (1995). Viscous flow in axisymmetric pipes with slow variations. Computer and Fluids, 24(6): 685-717.  https://doi.org/10.1016/0045-7930(95)00002-T    [Google Scholar]
  14. Manton MJ (1971). Low Reynolds number flow in slowly varying axisymmetric tube. Journal of Fluid Mechanics, 49(3): 451-459.  https://doi.org/10.1017/S0022112071002192    [Google Scholar]
  15. Matthews MT and Hill JM (2007). Nano boundary layer equation with nonlinear Navier boundary condition. Journal of Mathematical Analysis and Applications, 333(1): 381–400.  https://doi.org/10.1016/j.jmaa.2006.08.047    [Google Scholar]
  16. Matthews MT and Hill JM (2008). A note on the boundary layer equations with linear slip boundary condition. Applied Mathematics Letters, 21(8): 810–813.  https://doi.org/10.1016/j.aml.2007.09.002    [Google Scholar]
  17. Pérez-Salas KY, Ascanio G, Ruiz-Huerta L, and Aguayo JP (2021). Approximate analytical solution for the flow of a Phan-Thien–Tanner fluid through an axisymmetric hyperbolic contraction with slip boundary condition. Physics of Fluids, 33(5): 053110.  https://doi.org/10.1063/5.0048625    [Google Scholar]
  18. Ponalagusamy RI and Priyadharshini S (2017). Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration. Computer Methods and Programs in Biomedicine, 142: 31-41.  https://doi.org/10.1016/j.cmpb.2017.02.014    [Google Scholar] PMid:28325445
  19. Rao AR and Devanathan R (1973). Pulsatile flow in tubes of slowly varying cross-section. Journal of Applied Mathematics and Physics (ZAMP), 24: 203-213.  https://doi.org/10.1007/BF01590913    [Google Scholar]
  20. Rao IJ and Rajagopal T (1999). The effect of the slip boundary condition on the flow of fluids in channel. Acta Mechanica, 135(3): 113-126.  https://doi.org/10.1007/BF01305747    [Google Scholar]
  21. Shankar BM, Jai Kumar, Shivakumara IS, and Naveen Kumar SB (2019). MHD instability of pressure-driven flow of a non-Newtonian fluid. SN Applied Sciences, 1(12): 1523.  https://doi.org/10.1007/s42452-019-1557-2    [Google Scholar]
  22. Singh KD (2013). Effect of slip condition on viscoelastic MHD oscillatory forced convection flow in a vertical channel with heat radiation. International Journal of Applied Mechanics and Engineering, 18(4): 1237-1248.  https://doi.org/10.2478/ijame-2013-0075    [Google Scholar]
  23. Singh R and Laurence RL (1979). Influence of slip velocity at membrance surface on ultrafiltration performance creeping flow in tow-dimensional networks. International Journal of Heat and Mass Transfer, 22(5): 721-729.  https://doi.org/10.1016/0017-9310(79)90119-4    [Google Scholar]
  24. Sisavath S, Jing X, and Zimmerman RW (2001a). Laminar flow through irregularly shaped pores in sedimentary rocks. Transport in Porous Media, 45(1): 41-62.  https://doi.org/10.1023/A:1011898612442    [Google Scholar]
  25. Sisavath S, Jing X, and Zimmerman RW (2001b). Creeping flow through a pipe of varying radius. Physics Fluids, 13(10): 2762–2772.  https://doi.org/10.1063/1.1399289    [Google Scholar]
  26. Srinivasacharya D and Rao GM (2016). Computational analysis of magnetic effects on pulsatile flow of couple stress fluid through a bifurcated artery. Computer Methods and Programs in Bio-medicine, 137: 269-279.  https://doi.org/10.1016/j.cmpb.2016.09.015    [Google Scholar] PMid:28110731
  27. Teimouri K, Tavakoli MR, Ghafari A, and Kim KC (2021). Investigation of the plaque morphology effect on changes of pulsatile blood flow in a stenosed curved artery induced by an external magnetic field. Computers Biology and Medicine, 135: 104600.  https://doi.org/10.1016/j.compbiomed.2021.104600    [Google Scholar] PMid:34214938
  28. Terrill RM (1984). A note on laminar flows through a porous pipe with slip. IMA Journal of Applied Mathematics, 33(2): 169-174.  https://doi.org/10.1093/imamat/33.2.169    [Google Scholar]
  29. Terrill RM and Thomas PW (1969). On laminar flow through a uniformly porous pipe. Applied Scientific Research, 21: 37–67.  https://doi.org/10.1007/BF00411596    [Google Scholar]
  30. Tilton JN and Payatakes AC (1984). Collocation solution of creeping Newtonian through sinusoidal tubes: A correction. AI ChE Journal, 30(6): 1016-1021.  https://doi.org/10.1002/aic.690300628    [Google Scholar]
  31. Van Dyke M (1987). Slow variations in continuum mechanics. Advances in Applied Mechanics, 25: 1-45.  https://doi.org/10.1016/S0065-2156(08)70276-X    [Google Scholar]
  32. Vasudeviah M and Balaurugan K (1999). Stokes slip flow in a corrugated pipe. International Journal of Engineering, 37(12): 1629-1641.  https://doi.org/10.1016/S0020-7225(98)00138-4    [Google Scholar]
  33. White FM (1962). Laminar flow in a uniformly porous pipe. Journal of Applied Mechanics, 29(1): 201–204.  https://doi.org/10.1115/1.3636459    [Google Scholar]
  34. Wong CY (2002). Low Reynolds number slip flow in a curved rectangular duct. Journal of Applied Mechanics, 69(2): 189-194.  https://doi.org/10.1115/1.1445142    [Google Scholar]