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This study examines wave propagation in elastic orthotropic tubes filled with 
a uniformly tapered fluid, focusing on the effects of slip velocity variations at 
the tube wall. A Newtonian fluid flows through tubes with different radii, and 
microscale gas flows may be influenced by temperature gradients, affecting 
viscosity and temperature-dependent thermal conductivity. An asymptotic 
series solution for low Reynolds number flow is employed to determine 
streamlines, velocity profiles, and variations in amplitude and wavelength of 
constrictions. A closed-form formula is derived to calculate the pressure 
drop, improving upon the Hagen-Poiseuille model by accounting for 
wavelength effects. Axisymmetric solutions to the governing differential 
equations are obtained under the assumption of no traction on the outer wall 
surface. Numerical analysis reveals that the slip parameter significantly 
influences axial and radial velocities as well as temperature profiles, 
providing insights into fluid behavior in elastic tubes. 
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1. Introduction 

*Intravascular plaques frequently cause stenosis, a 
localized constriction of an artery in humans or 
animals. This narrowing of the artery prevents blood 
from flowing normally. Serious problems, such as 
tissue growth in the artery, coronary thrombosis, 
and arterial weakening and bulging downstream 
from the stenosis, may be better understood by 
gaining a better grasp of the flow patterns close to 
the stenosis. Whole blood pulsating through a 
cylinder is the subject of research (El‐Khatib et al., 
2003). For further information on pulsatile blood 
flow analysis in a model bifurcated artery with 
stenosis in the parent arterial lumen, refer to 
Chakravarty (2008) and Panlogism et al. (2017). 
Srinivasacharya and Rao’s (2016) investigations on 
wave propagation in fluid-filled tubes have been 
ongoing for quite some time, but many important 
details remain unsolved. The tubes were thought to 
be connected. Using the resulting analytical formulas 
and adequate data for the parameters involved, 
numerical estimates of numerous variables of 
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physical importance have been attempted for a 
particular instance of blood flow via a tapering 
artery section, which is in tethered condition. 
Teimouri et al. (2021) studied the effect of an 
external magnetic field on the shape of plaque as a 
function of fluctuations in pulsatile blood flow in a 
stenosed curved artery. Arteriosclerotic blood 
vessels and pipe flow may be better understood by 
studying flows in tubes of varied radii. Both steady-
state and pulse-wave blood flow were used to test 
the carotid artery's stability (Khalafvand et al., 
2015). 

Manton (1971) examined the concept of constant 
flow in a tube with a radius that varied slowly. Chow 
and Soda (1972) investigated the steady-state flow 
in a tube with a roughness wall of arbitrarily high 
spread relative to the tube's mean radius. This 
method presupposes, without explicitly saying so, 
that even when the radius is a periodic function of 
the axial variable, all disturbances to the velocity are 
zero at infinity. By increasing the stream function by 
powers of the ostensibly small ratio between the 
orders of magnitude of average oscillatory and stable 
axial velocities, Rao and Devanathan (1973) 
examined slow pulsatile flow in tubes with slowly 
varying cross sections. The gradual change in the 
cross-section of a tube carrying a viscous fluid is a 
basic idea having physiological and technical 
implications. 

Ponalagusamy and Priyadharshini (2017) studied 
the nonlinear model of pulsatile flow of blood 
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through a porous bifurcated arterial stenosis. When 
seen through a physiological lens, blood flows 
through the body's main arteries as a viscous fluid 
according to Newton's laws of motion (Shankar et al., 
2019). Newtonian fluid pressure wave propagation 
in uniformly convergent and divergent thin-walled 
orthotropic elastic tubes: a theoretical study. There 
are axisymmetric solutions to the differential 
equations that control the fluid and solid elastic wall 
motions. Flowing in an axisymmetric rotating tube 
has been the subject of much research in theory and 
experiment. The presence of stenosis on the arterial 
walls alters blood flow, which in turn causes vascular 
diseases. This is a well-known fact in the field of 
biomechanics. Regarding biomechanics, the 
development of artificial blood vessels and 
comprehension of how blood flows in arteries 
depend on research into blood flow in tapered 
geometries. Although they work better with tubes of 
uniform diameter, there would be no hemodynamic 
benefit to employing tapered lumen grafts. The 
blood flow velocity increases with distance due to 
the gradual reduction in the cross-sectional area of a 
tapered lumen. The flow of a Newtonian fluid 
through an axisymmetrically constricted tube at low 
Reynolds numbers has several solutions. A simple 
model may estimate the flow by supposing Hagen-
Poiseuille flow at each axial position along the tube. 
The Hagen-Poiseuille equation is integrated across 
the tube length to get the total pressure drop. Even 
though tubes with small constrictions may still 
provide satisfactory results, this method becomes 
less accurate as the amplitude of the constriction 
becomes large; for more, see Sisavath et al. (2001a). 
Methods such as the geometric iteration method, the 
collocation method (Tilton and Payatakes, 1984), or 
the boundary integral method are numerical 
approaches that may be used to solve the Navier-
Stokes equation. The approximate analytical solution 
for the flow of a Phan-Thien-Tanner fluid through an 
axisymmetric hyperbolic contraction with slip 
boundary condition is investigated in Boraey and 
Guaily (2021) and Pérez-Salas et al. (2021) for the 
quasi-two-dimensional non-isothermal fully 
developed flow of molten salt in a circular pipe. Bilal 
et al. (2022) studied the magneto nanofluid flow 
over partially slip and convective cylinders with 
thermal radiation. According to Hemmat et al. 
(1995), these methods may provide a range of 
valuable outcomes that are usually in agreement 
with experimental data, even when the Reynolds 
number is higher than the one at which flow 
recirculation begins. White (1962), Terrill and 
Thomas (1969), and Terrill (1984) were a few 
examples of works that discuss laminar flow in 
porous rectangular channels and porous cylindrical 
pipes, respectively. Applying a perturbation analysis 
to the Navier-Stokes equation for low Reynolds 
number, slowly evolving tubes, by Sisavath et al. 
(2001a). The classical laminar boundary layer 
equations are solved using the nonlinear Navier 
boundary condition (Matthews and Hill, 2007; 
2008). A fundamental concept of viscous liquid 

mechanics is the "no-slip" boundary condition. On 
the other hand, there are several cases when this 
assumption is wrong seen in Koplik (1982) and 
Elshahed (2004). A study conducted by Singh (2013) 
examined the significant effects of sliding against a 
wall and observed. A thin film of fluid flowing in 
streams at the boundary area immediately below the 
permeable surface is connected to the slip velocity, 
which is inversely related to the shear rate there 
(Singh and Laurence, 1979). Furthermore, the slip 
suits specific chemical engineering and other 
application difficulties (Chu, 2000; Rao and 
Rajagopal, 1999; Wong, 2002). The validity of the 
continuum approach relies on the value of the 
Knudsen number (Kn). This non-dimensional 
parameter is the fluid molecules' mean free path 
ratio to the fluid passage's dimensions. This is even 
though fluid is typically treated as a continuous 
medium in flow through microdomains. The fluid is 
seen to lose its hold on borders and slide over the 
domain walls if Kn is between 0.001 and 0.1 
(Vasudeviah et al., 1999). In their study, Fusi et al. 
(2020); the movement of a Bingham fluid through a 
conduit with a radius that can be changed. Kakaç et 
al. (2011) investigated how viscosity and thermal 
conductivity changes impacted heat transmission in 
slip flow between single phases. 

This work addresses the slow, unsteady flow in 
an axisymmetric tube of arbitrarily changeable 
radius, and its objective is to examine the influence 
of slip velocity on the steady flow of a Newtonian 
fluid through such a tube. The cross-section of the 
tube may be varied. An axisymmetric tube with a 
radius that varies sinusoidally is subjected to the 
asymptotic solution that was first proposed by 
Manton (1971) and subsequently revised by Van 
Dyke (1987). Analyzed numerically is a specific 
example of flow in a tube with a sinusoidal border. 
Using analytical and numerical methods, we were 
able to solve this problem. We anticipate that the 
paper's findings will be useful in future research on 
blood flow through individual arterial segments and, 
more specifically, in studying how small amplitude 
harmonic waves produced by blood flow propagate 
through such segments when the wavelength is 
much larger than their radius. 

2. Formulation and analysis 

The steady-state Navier-Stokes equations for a 
Newtonian fluid flowing through an axisymmetric 
tube with a radius R(z) (Fig. 1) that might change are 
expressed in terms of the cylindrical coordinate 
system (r, z) as: 
 

𝜌 (𝑢
𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑟
+ 𝜇 {

𝜕

𝜕𝑟
[
1

𝑟

𝜕(𝑟𝑢)

𝜕𝑟
] +

𝜕2𝑢

𝜕𝑧2
}                     (1) 

𝜌 (𝑢
𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+ 𝜇 {

𝜕

𝜕𝑟
[
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤

𝜕𝑟
)] +

𝜕2𝑤

𝜕𝑧2
}            

                      (2) 

 
The equation of continuity is given by: 

 
1

𝑟

𝜕(𝑟𝑢)

𝜕𝑟
+
𝜕𝑤

𝜕𝑧
= 0.                                                                   (3) 
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Due to the axisymmetry of the flow, the following 
conditions can be applied: 
 
𝑢 = 0             as           𝑟 = 0                                                          (4) 
𝜕𝑤

𝜕𝑟
= 0            as           𝑟 = 0                                                         (5) 

 

The components of velocity are and 𝑤 in the 
radial and axial directions, 𝑝 is the pressure, 𝜇 is the 
viscosity of the fluid, and 𝜌 is the density. It is 
assumed that no force acts on the fluid, and, all 

derivatives 
𝜕

𝜕𝜃
 are set to zero, and  𝑢𝜃 = 0. 

 

 
Fig. 1: Sketch of slip flow through a pipe of variable radius 

3. Slip condition 

This problem is distinct since it relies on slip flow 
along the wall. The flow geometry may be specified 
using an orthogonal curvilinear coordinate system to 
determine the relevant boundary condition. Here 𝑛 
the corresponding distance measured normal to the 
surface, 𝑠 measures the distance of a point along the 
surface, and the corresponding velocity 
components (𝑢𝑠, 𝑢𝑛). The slip velocity formula. 
According to the Newtonian model used to construct 
the Navier-Stokes relations, it is seen as a linear 
function of the velocity gradient in the present 
setting (Vasudeviah et al., 1999). Consequently, the 
slip velocity generates the correct boundary 
condition: 
 

𝑢𝑠 = −𝐶ℓ
𝜕𝑢𝑠

𝜕𝑛
,         on          𝑟 = 𝑅(𝑧)                                        (6) 

 

In this context, ℓ is the fluid molecules' mean free 
path, the slip-coefficient 𝐶 and let 𝐶 = 1.14664. 
From condition (6), we observe that 𝑢𝑠 = (𝑢,𝑤). �̂� 

and 
𝜕𝑢𝑠

𝜕𝑛
= 𝛻𝑢𝑠. �̂�, then,  

 

𝑤 + 𝑢
𝑑𝑅(𝑧)

𝑑𝑧
= −𝐶ℓ [

𝜕𝑤

𝜕𝑟
+
𝜕𝑢

𝜕𝑟

𝑑𝑅(𝑧)

𝑑𝑧
−
1

2

𝜕𝑤

𝜕𝑟
(
𝑑𝑅(𝑧)

𝑑𝑧
)
2

−

𝜕𝑤

𝜕𝑧

𝑑𝑅(𝑧)

𝑑𝑧
+. . . . . ] ,          on    𝑟 = 𝑅(𝑧).                     (7) 

 
Stream function 𝜓, defined by: 

 

𝑤 =
1

𝑟

𝜕𝜓

𝜕𝑟
,          𝑢 = −

1

𝑟

𝜕𝜓

𝜕𝑧
,                                                          (8) 

 

which must satisfy the boundary conditions (3) 
 
𝜓 = 𝜓0                      on         𝑟 = 𝑅(𝑧)                                        (9) 
𝜓 = 𝑂(𝑟2)            as         𝑟 → 0                          (10) 
 

While conditions (9) and (10) specify the 
constant flow rat𝑞. Conditions (9) and (10) also 

specify a velocity scale 𝑊0 defined by 𝑊0 =
𝑞
𝜋𝑅0

2⁄ , 

the parameter 𝑅0 being a length scale (e.g. the mean 
radius of the tube).  

Condition (9) also implies the boundary 
conditions used by Manton (1971), i.e. 

 
1

𝑟

𝜕𝜓

𝜕𝑧
→ 0    as    𝑟 → 0,     

𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜓

𝜕𝑟
) → 0   as      𝑟 → 0.         (11) 

 

Along the tube's axis, the solution remains 
regular. 
 
Dimensionless variable: Using the following non-
dimension variable: 
 

𝑟∗ =
𝑟

𝑅0
,         𝑧∗ =

𝑧

𝑅0
,         𝜓∗ =

𝜓

𝜓0
,         𝑢∗ =

2𝑢

𝑊0
,        𝑤∗ =

2𝑤

𝑊0
,  

𝑅𝑒 =
𝜌𝜏𝜓0

𝑅0𝜇
,     𝑔(𝑧) =

𝑅(𝑧)

𝑅0
,      𝐾𝑛 =

𝑙

𝑅0
,    𝛽 = 𝐶𝐾𝑛,           (12) 

 

where, 𝑅𝑒, 𝑔(𝑧) and 𝐾𝑛 are Low Reynolds number, 
functional without dimensions for the tube's border 
and Knudsen number, respectively. See what 
happens when you use as the stream function's scale 
factor, differentiate Eq. 1 with respect to and Eq. 2 
for, and then subtract the two equations (Van Dyke 
1987). 

 

𝐷4𝜓 =
𝑅𝑒

𝑟(
2

𝑟

𝜕𝜓

𝜕𝑧
+
𝜕𝜓

𝜕𝑟

𝜕

𝜕𝑧
−
𝜕𝜓

𝜕𝑧

𝜕

𝜕𝑟
)
2                   (13) 

 

where, 𝐷2𝜓 =
𝜕2𝜓

𝜕𝑟2
−

1

𝑟

𝜕𝜓

𝜕𝑟
+

𝜕2𝜓

𝜕𝑧2
.  

 

The boundary conditions become: 
 
𝜓 = 1

1

𝑟

𝜕𝜓

𝜕𝑟
+ 𝛽

𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜓

𝜕𝑟
) =

1

𝑟

𝜕𝜓

𝜕𝑧

𝑑𝑔

𝑑𝑧
+

𝛽 [
𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜓

𝜕𝑧
)
𝑑𝑔

𝑑𝑧
+
1

2

𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜓

𝜕𝑟
) (

𝑑𝑔

𝑑𝑧
)
2
+
1

𝑟

𝜕2𝜓

𝜕𝑟𝜕𝑧

𝑑𝑔

𝑑𝑧
]}
 
 

 
 

  

 on              𝑟 = 𝑔(𝑧)                               (14) 
1

𝑟

𝜕𝜓

𝜕𝑧
→ 0

𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜓

𝜕𝑟
) → 0

}               as 𝑟 → 0                                              (15) 

 

For a small dimensionless perturbation 
parameter 𝜀 (in the limit𝜀 → 0, the tube is of 
constant radius), contraction of the axial coordinate 
to 𝑍 = 𝜀𝑧 transform the differential Eq. 13 then, 
 

(
𝜕2

𝜕𝑟2
−

1

𝑟

𝜕

𝜕𝑟
+ 𝜀2

𝜕2

𝜕𝑧2
)
2

𝜓 =
𝜀𝑅𝑒

𝑟(
2

𝑟

𝜕𝜓

𝜕𝑧
+
𝜕𝜓

𝜕𝑟

𝜕

𝜕𝑧
−
𝜕𝜓

𝜕𝑧

𝜕

𝜕𝑟
)(
𝜕2𝜓

𝜕𝑟2
−
1

𝑟

𝜕𝜓

𝜕𝑟
+𝜀2

𝜕2𝜓

𝜕𝑧2
)
                (16) 

4. Perturbation solution 

To overcome the current issue, we increase the 
flow quantities in a power series with a tiny 
parameter 𝜀 as follows: 
 
𝑢 = 𝑢0 + 𝜀𝑢1 + 𝜀

2𝑢2 + 𝑂(𝜀
3)  

𝑤 = 𝑤0 + 𝜀𝑤1 + 𝜀
2𝑤2 + 𝑂(𝜀

3)  
𝜓 = 𝜓0 + 𝜀𝜓1 + 𝜀

2𝜓2 + 𝑂(𝜀
3).                                             (17) 
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Substituting Eq. 17 in Eqs. 14, 15, and 16 while 
amassing coefficients with similar powers of𝜀, one 
gets the zero-order equation as: 

 

(
𝜕2

𝜕𝑟2
−
1

𝑟

𝜕

𝜕𝑟
)
2

𝜓0 = 0                                                            (18) 

 
and  
 
𝜓0 = 1
1

𝑟

𝜕𝜓0

𝜕𝑟
+ 𝛽

𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜓0

𝜕𝑟
) = 0

}      

 

on the wall of the pipe 
 
r = h(Z)                                                    (19) 
1

𝑟

𝜕𝜓0

𝜕𝑍
→ 0

𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜓0

𝜕𝑟
) → 0

}              as               𝑟 → 0                                (20) 

 

where, 
 
g(z) = h(Z).                                                   (21) 
 

The solution of the set Eqs. 18-21 give the stream 
function components as: 
 

ψ
0
=

1

4β+h
[2(2β+ h)η2 − hη4]                                              (22) 

 

where, η =
r

h
  

 

In view of Eq. 16, the 𝜀-order equation is: 
 

(
𝜕2

𝜕𝑟2
−
1

𝑟

𝜕

𝜕𝑟
)
2

𝜓1 =
𝑅𝑒

𝑟(
2

𝑟

𝜕𝜓0
𝜕𝑍

+
𝜕𝜓0
𝜕𝑟

𝜕

𝜕𝑍
−
𝜕𝜓0
𝜕𝑍

𝜕

𝜕𝑟
)(
𝜕2𝜓0
𝜕𝑟2

−
1

𝑟

𝜕𝜓0
𝜕𝑟
)
                (23) 

 

Moreover, 
 
𝜓1 = 0
1

𝑟

𝜕𝜓1

𝜕𝑟
+ 𝛽

𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜓1

𝜕𝑟
) = 0

} ,     

 

on the wall of the pipe  
 
r = h(Z)                                                 (24) 
1

𝑟

𝜕𝜓1

𝜕𝑍
→ 0

𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜓1

𝜕𝑟
) → 0

}                  as     𝑟 → 0                                      (25) 

 
Solving Eqs. 23-25, one obtains: 

ψ
1
=

h′ Re(3β+h)

9(2β+h)(4β+h)3
{4(2β+ h)(6β+ h)η2 − [2h(6β+ h) +

(72β2 + 42βh + 7h2)]η4 + 6(2β+ h)2η6 − h(2β+ h)η8}.                

                                                         (26) 

 
The 𝜀2-order equation is: 
 

(
𝜕2

𝜕𝑟2
−
1

𝑟

𝜕

𝜕𝑟
)
2

𝜓2 + (
𝜕2

𝜕𝑟2
−
1

𝑟

𝜕

𝜕𝑟
)
𝜕2𝜓0

𝜕𝑍2
+

𝜕2

𝜕𝑍2
(
𝜕2𝜓0

𝜕𝑟2
−
1

𝑟

𝜕𝜓0

𝜕𝑟
) ==

𝑅𝑒

𝑟[(
2

𝑟

𝜕𝜓0
𝜕𝑍

+
𝜕𝜓0
𝜕𝑟

𝜕

𝜕𝑍
−
𝜕𝜓0
𝜕𝑍

𝜕

𝜕𝑟
)(
𝜕2𝜓1
𝜕𝑟2

−
1

𝑟

𝜕𝜓1
𝜕𝑟
)
+ (

2

𝑟

𝜕𝜓1

𝜕𝑍
+
𝜕𝜓1

𝜕𝑟

𝜕

𝜕𝑍
−

𝜕𝜓1

𝜕𝑍

𝜕

𝜕𝑟
) (

𝜕2𝜓0

𝜕𝑟2
−
1

𝑟

𝜕𝜓0

𝜕𝑟
)]                                                               (27) 

 
In addition, the corresponding boundary 

conditions are: 
 
ψ2 = 0
1

r

∂ψ2

∂r
+ β

∂

∂r
(
1

r

∂ψ2

∂r
) = f(r, z)

} on r = h(Z)                            (28) 

1

r

∂ψ2

∂Z
→ 0

∂

∂r
(
1

r

∂ψ2

∂r
) → 0

} as  r → 0                                                          (29) 

 

where,  
 

f(r, z) =
1

r

∂ψ0

∂z

dh

dz
+ β [

∂

∂r
(
1

r

∂ψ0

∂z
)
dh

dz
+
1

2

∂

∂r
(
1

r

∂ψ0

∂r
) (

dh

dz
)
2
+

1

r

∂2ψ0

∂r∂z

dh

dz
].  

 

Solving Eqs. 27-29 on obtains: 
 

ψ
2
=

1

3(4β+h)4
(12β(4β+ h)(1 + h)(η2 − η4)hh′ +

(δ1η2 − 2δ2η4 + δ3η6)h′2 − (4β+ h)(3β+ h)[(8β+

h)η2 − 2(6β+ h)η4 + (4β+ h)η6]h2h″) +
Re2

2700(4β+h)6
[
h′2

h
(2λ1η2 − 5λ2η4 + 50λ3η6 − 75λ4η8 +

30λ5η10 − 2λ6μ12) − 3(3β+ h)(4β+ h)h″(4α1η2 −
5α2η4 + 150α3η6 − 25α4η8 + 20α5η10 − 2α6η12)]        (30) 
 

where, 
 

{

 δ1 = 384β
4 + 624β3h + 324β2h2 + 70βh3 + 5h4

δ2 = 192β
4 + 408β3h + 246β2h2 + 60βh3 + 5h4

δ3 = h(4β + h)(48β
2 + 30βh + 5h4)                         

}.  

 

The h′and h′′are the first and the second 
derivatives of  h  with respect to Z and 

  

{
  
 

  
 

λ1 = 403200β
5 + 510480β4h + 258000β3h2 + 65001β2h3 + 8180βh4 + 409h5

λ2 = 276480β
5 + 388800β4h + 218928β3h2 + 61548β2h3 + 8622βh4 + 479h5

   λ3 = (4β + h)(3456β
4 + 5184β3h + 2772β2h2 + 636βh3 + 43h4)                                

λ4 = (4β + h)(384β
4 + 960β3h + 676β2h2 + 190βh3 + 19h4)                                    

λ5 = h(4β + h)(252β
3 + 281β2h + 104βh2 + 13h3)                                                     

λ6 = h
2(4β + h)(180β2 + 114βh + 19h2)                                                                          }

  
 

  
 

                          (31) 

 
and 
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{
  
 

  
 
α1 = 1400β

3 + 860β2h + 182βh2 + 13h3

   α2 = 1920β
3 + 1400β2h + 348βh2 + 29h3

α3 = (4β + h)
2(2β + h)                                

α4 = (4β + h)(8β
2 + 12βh + 3h2)            

α5 = h(4β + h)(2β + h)                                

α6 = h
2(4β + h)                                                

      

}
  
 

  
 

                                         (32) 

  
 
5. Axial and radial velocities  

Using Eq. 7 and Eqs. 22, 26, and 30, the axial 
velocity w, non-dimensionalized by R0 and ψ0 can be 
expressed as: 
 

w =
4

h2(4β+h)
(2β + h − hη2) +

4(3β+h)h′Reϵ

9h2(2β+h)(4β+h)3
[2(2β +

h)(6β + h)  
−[2h(6β + h) + (72β2 + 42βh + 7h2)]η2 + 9(2β +
h)2η4 − 2h(2β + h)η6]  

+
2ε2

3h2(4β+h)4
(4β(1 + h)(4β + h)(1 − 6(4β + h)η2)hh′ +

(δ1 − 4δ2η
2 + 3δ3η

4)h′
2
  

−(3β + h)(4β + h)[(8β + h) − 4(6β + h)η2 +
3(4β + h)η4]h2h′′)  

+
Re2ϵ2

2700h2(4β+h)6
[
4h′

2

h
(λ1 − 5λ2η

2 + 75λ3η
4 − 150λ4η

6 +

75λ5η
8 − 6λ6η

10)  
−12(3β + h)(4β + h)h′′(2α1 − 5α2η

2 + 225α3η
4 −

50α4η
6 + 50α5η

8 − 6α6η
10)]  

+O(ϵ2).                                                        (33) 
 

In addition, the radial velocity  u, 
nondimensionalized by R0 and  ψ0, expressed as: 
 

u =
4h′

h2(4β+h)2
[(8β2 + 5βh + h2)η − h(3β + h)η3]  

+
Reϵ

9(4β+h)4
{
h′
2

h2
[12(48β3 + 42β2h + 12βh2 + h3)η −

9(4β + h)(48β2 + 30βh +   5h2)η3  
+6(144β3 + 154β2h + 56βh2 + 7h3)η5 − 3h(28β2 +
18βh + 3h2)η7]  

−(3β + h)(4β +  h)
h′′

h
[4(6β + h)η − 9(4β + h)η3 +

6(2β + h)η5 − hη7]}  

+ϵ2 {
4βh′

2

h(4β+h)3
[(4β + 3h + 2h2)η − (12β + 5h + 5βh +

4h2)η3] −
4β(1+h)h′′

(4β+h)2
(η − η3)   

+
2h′

3

3h2(4β+h)5
[c1η − 4c2η

3 + 3c3η
5] −

h′h′′

2h(4β+h)4
[c4η −

2c5η
3 + 3δ3η

5]   

+
h(3β+h)h′′′

3(4β+h)3
[(8β + h)η − 2(6β + h)η3 + (4β + h)η5]  

+
h′
3
Re2

1350h3(4β+h)7
[2a1η − 15a2η

3 + 200a3η
5 − 75a4η

7 +

30a5η
9 − 2a6η

11]  

+
(3β+h)Re2h′′′

900h(4β+h)5
[4α1η − 5α2η

3 + 150α3η
5 − 25α4η

7 +

20α5η
9 − 2α6η

11]  

−
Re2h′h′′

2700h2(4β+h)6
[4b1η − 5b2η

3 + 50b3η
5 − 75b4η

7 +

180b5η
9 − 2b6η

11]} + O(ϵ3)                   (34) 
 

where, 
 
c1 = 1536β

5 + 2400β4h + 1560β3h2 + 508β2h3 +
85βh4 + 5h5  
c2 = 768β

5 + 1608β4h + 1206β3h2 + 429β2h3 + 75βh4 +
5h5  
c3 = (4β + h)(160β

3 + 144β2h + 45βh2 + 5h3)  

c4 = 768β
4 + 1248β3h + 676β2h2 + 154βh3 + 11h4  

c5 = 384β
4 + 960β3h + 618β2h2 + 156βh3 + 13h4,     (35) 

a1 = 2419200β
6 + 3856320β5h + 255792β4h2 +

903000β3h3 + 178643β2h4  
+18814βh5 + 818h6    
a2 = 921600β

6 + 1543680β5h + 1085856β4h2 +
410456β3h3 + 87812β2h4  
+10059βh5 + 479h6    
a3 = (4β + h)(12096β

5 + 20736β4h + 14058β3h2 +
4737β2h3 + 795βh4 + 53h5)  
a4 = (4β + h)(6912β

5 + 18048β4h + 15704β3h2 +
6336β2h3 + 1235βh4 + 95h5)  
a5 = h(4β + h)(5040β

4 + 6948β3h + 3631β2h2 +
858βh3 + 78h4)  
a6 = h

2(4β + h)(3960β3 + 3720β2h + 1197βh2 + 133h3)  
               (36) 

and 
 
b1 = 504000β

5 + 646440β4h + 329640β3h2 +
83439β2h3 + 10520βh4 + 526h5  
b2 = 82944β

5 + 1153440β4h + 643392β3h2 +
179640β2h3 + 25074βh4 + 1393h5   
b3 = (4β + h)(12096β

4 + 17208β3h + 8946β2h2 +
2028βh3 + 169h4)                      
b4 = (4β + h)(1536β

4 + 3440β3h + 2340β2h2 +
650βh3 + 65h4)   
b5 = h(4β + h)(156β

3 + 173β2h + 64βh2 + 8h3)  
b6 = h

2(4β + h)(720β2 + 462βh + 77h2).                        (37) 
 

For (Re → 0), the terms containing  Re  omitted, 
and the axial and radial velocities simplified as: 
 

w =
4

h2(4β+h)
(2β + h − hη2)   

 +
2ε2

3h2(4β+h)4
(4β(1 + h)(4β + h)(1 − 6(4β + h)η2)hh′ +

(δ1 − 4δ2η
2 + 3δ3η

4)h′
2
   

−(3β + h)(4β + h)[(8β + h) − 4(6β + h)η2 +
3(4β + h)η4]h2h′′) + O(ϵ2)                                 (38) 

u =
4h′

h2(4β+h)2
[(8β2 + 5βh + h2)η − h(3β + h)η3]  

+ϵ2 {
4βh′

2

h(4β+h)3
[(4β + 3h + 2h2)η − (12β + 5h + 5βh +

4h2)η3] −
4β(1+h)h′′

(4β+h)2
(η − η3)  

+
2h′

3

3h2(4β+h)5
[c1η − 4c2η

3 + 3c3η
5] −

h′h′′

2h(4β+h)4
[c4η −

2c5η
3 + 3δ3η

5]  

+
h(3β+h)h′′′

3(4β+h)3
[(8β + h)η − 2(6β + h)η3 + (4β + h)η5] +

O(ϵ3)                                                   (39) 

6. Discussion  

Here, when β → 0, the solution of the stream 
function (22), (26) and (30) coincide well with Van 
Dyke (1987) and Sisavath et al. (2001b). The 
solutions of the axial and radial velocities (38) and 
(39) coincide with Kotorynski (1995). Following 
Sisavath et al. (2001b), the length scale R0 as the 
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mean radius of the constricted tube, and 

dimensionless length scale λ̃ defined as  λ̃ = λ
R0
⁄ , 

where  λ  is the wavelength of the constriction. The 
Reynolds number is calculated using Eq. 11 and can 
easily be connected to other definitions used if 
necessary. Let R(z) as: 
 

R(z) = R0 [1 +
δ

R0
sin (

2πz

λ
)],                                                   (40) 

 
where, z is the axial distance from the throat of the 
constriction (i.e. from the point of minimum radius). 
In accordance with the requirement that the tube 

profile be slowly varying, an appropriate small 
perturbation parameter is  
 

ϵ = δ̃
λ̃
⁄ ,                                                                                          (41) 

 

where, δ = δ̃ R0
⁄ is the dimensionless amplitude of 

the constriction,   𝑥 = 𝑟/𝑅.  
For different constriction configurations, the axial 

velocity profiles obtained from Eq. 38 are shown in 
Figs. 2-5, while the radial velocity profiles obtained 
from Eq. 39 are displayed in Figs. 6 and 7 for the 
same configurations. 

 

 
Fig. 2: Axial velocity profiles at the throat 

z

λ
= −0.25 for the geometry δ̃ = 0.6, λ̃ = 5 

 

 
Fig. 3: Axial velocity profiles at the top of the expansion region  

z

λ
= 0.25 for the geometry δ̃ = 0.6, λ̃ = 5 

 

 
Fig. 4: Axial velocity patterns at the throat 

z

λ
= −0.25 for the geometry δ̃ = 0.3, λ̃ = 2 

 

 
Fig. 5: Profiles of axial velocities at the expansion region's peak 

z

λ
= 0.25 for the geometry δ̃ = 0.3, λ̃ = 2 
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Fig. 6: Radial velocity profiles at the location  

z

λ
= 0 for the geometryδ̃ = 0.6, λ̃ = 5 

 

 
Fig. 7: Radial velocity profiles at the location 

z

λ
= 0  for the geometry δ̃ = 0.3,  λ̃ = 2 

 

7. Conclusion 

Here, it may be noted that, as a no-slip condition 
(β → 0), the axial velocity profile calculated using Eq. 
38 which is displayed in Figs. 2-5 at various cross-

sections of the tube (the throat  
z

λ
= −0.25 and the 

top of the expansion  
z

λ
= 0.25), and for various 

geometry δ̃ and λ̃, coincides well with results. As the 
slip condition, the axial velocity profile increases 
with the increase in the slip coefficient,β,  at the wall 
of the tube and decreases at the center of the tube 
(r = 0). The radial velocity profile obtained for this 
configuration using Eq. 39 is also displayed in Figs. 

5-6 in the region  (
z

λ
= 0). Our research shows that 

radial velocities are much greater close to the 
centerline and have negative values close to the tube 
wall because of flow reversal. Also, as the slip 
coefficient goes up, the radial velocity profile goes up 
too. Typically, when the wall temperature and wall 
heat flux are both constant, the converse is true for 
velocity slip and temperature leap: under these 
circumstances, a large slip on the wall enhances 
convection down the surface, whereas temperature 
leap has the opposite effect. The opposite is true for 
large temperature jumps; they decrease heat 
transmission by reducing the wall temperature 
gradient. Consequently, the heat transfer coefficient 
will be overestimated if the temperature increase is 
ignored. After that, the thermal conductivity and 
temperature-variable dynamic viscosity of the fluid 
were measured and compared to microchannel 
constant property findings taking rarefaction and 
viscous dissipation into account. Here is a summary 
of the findings about microscale slip flow: 
 
 It is important to include property variation effects 

in numerical solutions of microchannel airflow 

when the entrance length is like the channel 
length. Nevertheless, the constant property 
assumption will provide adequate findings for long 
channels with entry lengths that are negligible 
relative to the total channel length. 

 When thermophysical properties alter, it affects 
the temperature profile. Fluid heating and cooling 
experience substantial local number fluctuations 
in the growing area because of temperature-
changing properties. 

List of symbols  

r  Radial coordinate 
z  Axial coordinate 
R(z) Radius of the tube as a function of z 
u   Axial velocity component 
v   Radial velocity component 
p  Pressure 
μ Dynamic viscosity 
ρ Fluid density 
λ Fluid molecule mean free path 
φ Stream function 
ψ Perturbation stream function component 
ε Small perturbation parameter 
η Dimensionless radial coordinate 
ζ Dimensionless axial coordinate 
α Length scale 
β Slip coefficient 
Re Reynolds number 
Kn Knudsen number 
δ Dimensionless wavelength parameter 
A₀, A₁, 
A₂ 

Coefficients/functions in the stream function 
expansions 

∂ Partial derivative symbol 
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