Volume 11, Issue 8 (August 2024), Pages: 44-50
----------------------------------------------
Original Research Paper
Position-dependent mass Schrödinger equation for the q-deformed Woods-Saxson plus hyperbolic tangent potential
Author(s):
Emad Jaradat 1, *, Saja Tarawneh 1, Amer Aloqali 1, Marwan Ajoor 1, Raed Hijjawi 1, Omar Jaradat 2
Affiliation(s):
1Department of Physics, Mutah University, Al-Karak, Jordan
2Department of Mathematics, Mutah University, Al-Karak, Jordan
Full text
Full Text - PDF
* Corresponding Author.
Corresponding author's ORCID profile: https://orcid.org/0000-0001-5335-7060
Digital Object Identifier (DOI)
https://doi.org/10.21833/ijaas.2024.08.005
Abstract
In this work, we propose a new potential called the "q-deformed Woods-Saxon plus hyperbolic tangent potential." We derive the generalized Schrödinger equation for quantum mechanical systems with position-dependent masses under these potentials using the Nikiforov-Uvarov method, with the mass relationship defined as m(x)=m1/(1+qe-2λx). The solutions to this equation, expressed in terms of hypergeometric functions and Jacobi polynomials, offer insights into the quantum behavior of particles. The energy eigenvalues depend on system parameters such as the deformation parameter q, potential parameters, and quantum numbers. We analyzed the effect of the deformation parameter q numerically and visually using different values of these parameters.
© 2024 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords
Schrödinger equation, Nikiforov-Uvarov method, Q-deformed Woods-Saxon plus, hyperbolic tangent potential, Position dependent mass
Article history
Received 6 February 2024, Received in revised form 22 June 2024, Accepted 21 July 2024
Acknowledgment
No Acknowledgment.
Compliance with ethical standards
Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Citation:
Jaradat E, Tarawneh S, Aloqali A, Ajoor M, Hijjawi R, and Jaradat O (2024). Position-dependent mass Schrödinger equation for the q-deformed Woods-Saxson plus hyperbolic tangent potential. International Journal of Advanced and Applied Sciences, 11(8): 44-50
Permanent Link to this page
Figures
Fig. 1 Fig. 2 Fig. 3 Fig. 4
Tables
Table 1 Table 2
----------------------------------------------
References (31)
- Abadi VMM, Ranjbar AH, Mohammadi J, and Kharame RK (2019). Numerical solution of the Schrodinger equation for types of Woods-Saxon potential. Arxiv Preprint Arxiv:1910.03808. https://doi.org/10.48550/arXiv.1910.03808 [Google Scholar]
- Al-Hawamdeh MA, Akour AN, Jaradat EK, and Jaradat OK (2023). Involving Nikiforov-Uvarov method in Schrodinger equation obtaining Hartmann potential. East European Journal of Physics, 2: 117-123. https://doi.org/10.26565/2312-4334-2023-2-10 [Google Scholar]
- Arda A and Sever R (2009). Approximate ℓ-state solutions to the Klein–Gordon equation for modified Woods–Saxon potential with position dependent mass. International Journal of Modern Physics A, 24: 3985-3994. https://doi.org/10.1142/S0217751X0904600X [Google Scholar]
- Arda A, Aydoğdu O, and Sever R (2010). Scattering of the Woods–Saxon potential in the Schrödinger equation. Journal of Physics A: Mathematical and Theoretical, 43: 425204. https://doi.org/10.1088/1751-8113/43/42/425204 [Google Scholar]
- Badalov VH, Ahmadov HI, and Badalov SV (2010). Any l-state analytical solutions of the Klein–Gordon equation for the Woods–Saxon potential. International Journal of Modern Physics E, 19: 1463-1475. https://doi.org/10.1142/S0218301310015862 [Google Scholar]
- Berkdemir A, Berkdemir C, and Sever R (2006). Eigenvalues and eigenfunctions of Woods–Saxon potential in PT-symmetric quantum mechanics. Modern Physics Letters A, 21: 2087-2097. https://doi.org/10.1142/S0217732306019906 [Google Scholar]
- Bespalova OV, Romanovsky EA, and Spasskaya TI (2003). Nucleon–nucleus real potential of Woods–Saxon shape between− 60 and +60 MeV for the 40⩽ A⩽ 208 nuclei. Journal of Physics G: Nuclear and Particle Physics, 29: 1193. https://doi.org/10.1088/0954-3899/29/6/318 [Google Scholar]
- Chabab M, Lahbas A, and Oulne M (2012). Analytic l-state solutions of the Klein-Gordon equation for q-deformed Woods-Saxon plus generalized ring shape potential. Arxiv Preprint Arxiv:1203.5039. https://arxiv.org/abs/1203.5039 [Google Scholar]
- Dudek J, Pomorski K, Schunck N, and Dubray N (2003). Hyperdeformed and megadeformed nuclei: Lessons from the slow progress and emerging new strategies. The European Physical Journal A-Hadrons and Nuclei, 20: 15-29. https://doi.org/10.1140/epja/i2002-10313-4 [Google Scholar]
- Erkol H and Demiralp E (2007). The Woods–Saxon potential with point interactions. Physics Letters A, 365: 55-63. https://doi.org/10.1016/j.physleta.2006.12.050 [Google Scholar]
- Falaye BJ, Oyewumi KJ, and Abbas M (2013). Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov—Uvarov method. Chinese Physics B, 22: 110301. https://doi.org/10.1088/1674-1056/22/11/110301 [Google Scholar]
- Goldberg VZ, Chubarian GG, Tabacaru G, Trache L, Tribble RE, Aprahamian A, Rogachev GV, Skorodumov BB, and Tang XD (2004). Low-lying levels in F 15 and the shell model potential for drip-line nuclei. Physical Review C, 69: 031302. https://doi.org/10.1103/PhysRevC.69.031302 [Google Scholar]
- Gu Y, Chen B, Ye F, and Aminakbari N (2022). Soliton solutions of nonlinear Schrödinger equation with the variable coefficients under the influence of Woods–Saxon potential. Results in Physics, 42: 105979. https://doi.org/10.1016/j.rinp.2022.105979 [Google Scholar]
- Guo JY and Sheng ZQ (2005). Solution of the Dirac equation for the Woods–Saxon potential with spin and pseudospin symmetry. Physics Letters A, 338: 90-96. https://doi.org/10.1016/j.physleta.2005.02.026 [Google Scholar]
- Hagino K and Tanimura Y (2010). Iterative solution of a Dirac equation with an inverse Hamiltonian method. Physical Review C, 82(5): 057301. https://doi.org/10.1103/PhysRevC.82.057301 [Google Scholar]
- Ikhdair S and Sever R (2010). Approximate analytical solutions of the generalized Woods-Saxon potentials including the spin-orbit coupling term and spin symmetry. Open Physics, 8(4): 652-666. https://doi.org/10.2478/s11534-009-0118-5 [Google Scholar]
- Ikhdair SM and Sever R (2007). Exact solution of the Klein‐Gordon equation for the PT‐symmetric generalized Woods‐Saxon potential by the Nikiforov‐Uvarov method. Annalen der Physik, 519(3): 218-232. https://doi.org/10.1002/andp.20075190303 [Google Scholar]
- Ikhdair SM and Sever R (2008). Solutions of Dirac equation for symmetric generalized Woods-Saxon potential by the hypergeometric method. Arxiv Preprint Arxiv:0808.1002. https://arxiv.org/abs/0808.1002 [Google Scholar]
- Ikot AN, Hassanabadi H, and Abbey TM (2015). Spin and pseudospin symmetries of Hellmann potential with three tensor interactions using Nikiforov–Uvarov method. Communications in Theoretical Physics, 64(6): 637–643. https://doi.org/10.1088/0253-6102/64/6/637 [Google Scholar]
- Jaradat EK, Tarawneh SR, Akour NA, and Jaradat OK (2019). Demonstrating Shrodenger equation involving harmonic oscillator potential with a position dependent mass in an external electric field. Advanced Physics Research, 6(1): 15-28. https://doi.org/10.62476/apr61.28 [Google Scholar]
- Khounfais K, Boudjedaa T, and Chetouani L (2004). Scattering matrix for Feshbach-Villars equation for spin 0 and 1/2: Woods-Saxon potential. Czechoslovak Journal of Physics, 54: 697-710. https://doi.org/10.1023/B:CJOP.0000038524.36986.19 [Google Scholar]
- Nikiforov AF and Uvarov VB (1988). Special functions of mathematical physics. Volume 205, Birkhäuser, Basel, Switzerland. https://doi.org/10.1007/978-1-4757-1595-8 [Google Scholar]
- Okon IB, Popoola O, and Isonguyo CN (2014). Exact bound state solution of q-deformed Woods-Saxon plus modified coulomb potential using conventional Nikiforov-Uvarov method. International Journal of Recent Advances in Physics, 3(4): 29-38. https://doi.org/10.14810/ijrap.2014.3402 [Google Scholar]
- Panella O, Biondini S, and Arda ALTU Ğ (2010). New exact solution of the one-dimensional Dirac equation for the Woods–Saxon potential within the effective mass case. Journal of Physics A: Mathematical and Theoretical, 43(32): 325302. https://doi.org/10.1088/1751-8113/43/32/325302 [Google Scholar]
- Rojas C and Villalba VM (2005). Scattering of a Klein-Gordon particle by a Woods-Saxon potential. Physical Review A, 71(5): 052101. https://doi.org/10.1103/PhysRevA.71.052101 [Google Scholar]
- Romaniega C, Gadella M, Id Betan RM, and Nieto LM (2020). An approximation to the Woods–Saxon potential based on a contact interaction. The European Physical Journal Plus, 135(4): 1-27. https://doi.org/10.1140/epjp/s13360-020-00388-7 [Google Scholar]
- Sadeghi J and Pahlavani MR (2004). The hierachy of Hamiltonian for spherical Woods-Saxon potential. African Journal of Mathematical Physics, 1(2): 195-199. [Google Scholar]
- Tezcan C, Sever R, and Yeşiltaş Ö (2008). A new approach to the exact solutions of the effective mass Schrödinger equation. International Journal of Theoretical Physics, 47: 1713-1721. https://doi.org/10.1007/s10773-007-9613-x [Google Scholar]
- Von Roos O (1983). Position-dependent effective masses in semiconductor theory. Physical Review B, 27(12): 7547–7552. https://doi.org/10.1103/PhysRevB.27.7547 [Google Scholar]
- Wang N and Scheid W (2008). Quasi-elastic scattering and fusion with a modified Woods-Saxon potential. Physical Review C, 78(1): 014607. https://doi.org/10.1103/PhysRevC.78.014607 [Google Scholar]
- Yazdankish E (2021). Bound state solution of the Schrodinger equation for the Woods–Saxon potential plus coulomb interaction by Nikiforov–Uvarov and supersymmetric quantum mechanics methods. International Journal of Modern Physics E, 30: 2150023. https://doi.org/10.1142/S0218301321500233 [Google Scholar]
|