International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 8 (August 2024), Pages: 24-32

----------------------------------------------

 Original Research Paper

Bioconvective variable viscosity flow of Carreau nanofluid with external heat source and nonlinear radiation: Analysis with convective heat and mass constraints

 Author(s): 

 Rajab Alsayegh *

 Affiliation(s):

 Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-9940-9110

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.08.003

 Abstract

In this study, an unsteady model for Carreau nanofluid with microorganism decomposition is developed. The viscosity and thermal conductivity of the Carreau nanofluid are considered variable. Magnetic and porosity effects are included using a magneto-porosity parameter. An additional heat source is introduced to improve heat transfer. Nonlinear analysis is applied for radiative applications. The flow is modeled using an oscillatory stretching surface. Convective mass and heat constraints are used to analyze the problem. Analytical computations are performed on the developed model. The significance of various parameters for the thermal problem is discussed. The results may enhance the performance of transport problems, heat transmission, energy systems, and thermal devices.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Carreau nanofluid, Magneto-porosity, Heat transfer, Nonlinear analysis, Thermal conductivity

 Article history

 Received 29 February 2024, Received in revised form 10 July 2024, Accepted 20 July 2024

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Alsayegh R (2024). Bioconvective variable viscosity flow of Carreau nanofluid with external heat source and nonlinear radiation: Analysis with convective heat and mass constraints. International Journal of Advanced and Applied Sciences, 11(8): 24-32

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 

 Tables

 Table 1 Table 2

----------------------------------------------   

 References (29)

  1. Abbas T, Al-Khaled K, Raza AH, Ayadi M, Chammam W, and Khan SU (2023). Inclined magnetized flow of radioactive nanoparticles with exponential heat source and slip effects: Keller box simulations. Journal of Nanofluids, 12(2): 571-579. https://doi.org/10.1166/jon.2023.1935   [Google Scholar]
  2. Abbas Z, Wang Y, Hayat T, and Oberlack M (2008). Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface. International Journal of Non-Linear Mechanics, 43(8): 783-793. https://doi.org/10.1016/j.ijnonlinmec.2008.04.009   [Google Scholar]
  3. Ahmed J, Nazir F, Fadhl BM, Makhdoum BM, Mahmoud Z, Mohamed A, and Khan I (2023). Magneto-bioconvection flow of Casson nanofluid configured by a rotating disk in the presence of gyrotatic microorganisms and Joule heating. Heliyon, 9(8): e18028. https://doi.org/10.1016/j.heliyon.2023.e18028   [Google Scholar] PMid:37664738 PMCid:PMC10469572
  4. Anjum N, Khan WA, Azam M, Ali M, Waqas M, and Hussain I (2023). Significance of bioconvection analysis for thermally stratified 3D Cross nanofluid flow with gyrotactic microorganisms and activation energy aspects. Thermal Science and Engineering Progress, 38: 101596. https://doi.org/10.1016/j.tsep.2022.101596   [Google Scholar]
  5. Bhatti MM, Al-Khaled K, Khan SU, Chammam W, and Awais M (2023). Darcy–Forchheimer higher-order slip flow of Eyring–Powell nanofluid with nonlinear thermal radiation and bioconvection phenomenon. Journal of Dispersion Science and Technology, 44(2): 225-235. https://doi.org/10.1080/01932691.2021.1942035   [Google Scholar]
  6. Dharmaiah G, Dinarvand S, Prasad JR, Noeiaghdam S, and Abdollahzadeh M (2023). Non-homogeneous two-component Buongiorno model for nanofluid flow toward Howarth's wavy cylinder with activation energy. Results in Engineering, 17: 100879. https://doi.org/10.1016/j.rineng.2023.100879   [Google Scholar]
  7. Eid MR, Jamshed W, Goud BS, Ibrahim RW, El Din SM, Abd-Elmonem A, and Abdalla NSE (2023). Mathematical analysis for energy transfer of micropolar magnetic viscous nanofluid flow on permeable inclined surface and Dufour impact. Case Studies in Thermal Engineering, 49: 103296. https://doi.org/10.1016/j.csite.2023.103296   [Google Scholar]
  8. Gangadhar K, Victoria EM, and Chamkha AJ (2024). Effect of entropy minimization and melting heat on gold-magnesium oxide hybrid nanofluid in squeezing channel with magnetic field with radiation. International Journal of Modern Physics B, 38(14): 2450172. https://doi.org/10.1142/S0217979224501728   [Google Scholar]
  9. Ghachem K, Ahmad B, Noor S, Abbas T, Khan SU, Anjum S, Alwadai N, and Kolsi L (2023). Numerical simulations for radiated bioconvection flow of nanoparticles with viscous dissipation and exponential heat source. Journal of the Indian Chemical Society, 100(1): 100828. https://doi.org/10.1016/j.jics.2022.100828   [Google Scholar]
  10. Haq F, Rahman MU, Khan MI, Abdullaeva BS, and Altuijri R (2023). Mathematical modeling and theoretical analysis of bioconvective magnetized sutterby nanofluid flow over rotating disk with activation energy. BioNanoScience, 13(4): 1849-1862. https://doi.org/10.1007/s12668-023-01166-2   [Google Scholar]
  11. Hosseinzadeh K, Mardani MR, Paikar M, Hasibi A, Tavangar T, Nimafar M, Ganji DD, and Shafii MB (2023). Investigation of second grade viscoelastic non-Newtonian nanofluid flow on the curve stretching surface in presence of MHD. Results in Engineering, 17: 100838. https://doi.org/10.1016/j.rineng.2022.100838   [Google Scholar]
  12. Hussain Z, Khan WA, Ali M, Waqas M, and Ashraf IM (2023). Chemically reactive magneto-bioconvection 3D flow of radiative Williamson nanofluid containing oxytactic moment of microorganisms. Tribology International, 189: 108934. https://doi.org/10.1016/j.triboint.2023.108934   [Google Scholar]
  13. Jabeen K, Mushtaq M, Mushtaq T, and Muntazir RMA (2024). A numerical study of boundary layer flow of Williamson nanofluid in the presence of viscous dissipation, bioconvection, and activation energy. Numerical Heat Transfer, Part A: Applications, 85(3): 378-399. https://doi.org/10.1080/10407782.2023.2187494   [Google Scholar]
  14. Jalili P, Narimisa H, Jalili B, Shateri A, and Ganji DD (2023). A novel analytical approach to micro-polar nanofluid thermal analysis in the presence of thermophoresis, Brownian motion and Hall currents. Soft Computing, 27(2): 677-689. https://doi.org/10.1007/s00500-022-07643-2   [Google Scholar]
  15. Javaid M, Tahir M, Imran M, Baleanu D, Akgül A, and Imran MA (2022). Unsteady flow of fractional Burgers’ fluid in a rotating annulus region with power law kernel. Alexandria Engineering Journal, 61(1): 17-27. https://doi.org/10.1016/j.aej.2021.04.106   [Google Scholar]
  16. Khan SA, Hayat T, and Alsaedi A (2023). Bioconvection entropy optimized flow of Reiner-Rivlin nanoliquid with motile microorganisms. Alexandria Engineering Journal, 79: 81-92. https://doi.org/10.1016/j.aej.2023.07.069   [Google Scholar]
  17. Khan SU and Shehzad SA (2020). Electrical MHD Carreau nanofluid over porous oscillatory stretching surface with variable thermal conductivity: Applications of thermal extrusion system. Physica A: Statistical Mechanics and its Applications, 550: 124132. https://doi.org/10.1016/j.physa.2020.124132   [Google Scholar]
  18. Li S, Ali F, Zaib A, Loganathan K, Eldin SM, Ijaz Khan M (2023a). Bioconvection effect in the Carreau nanofluid with Cattaneo–Christov heat flux using stagnation point flow in the entropy generation: Micromachines level study. Open Physics, 21(1): 20220228. https://doi.org/10.1515/phys-2022-0228   [Google Scholar]
  19. Li Y, Majeed A, Ijaz N, Barghout K, Ali MR, Muhammad T (2023b). Melting thermal transportation in bioconvection Casson nanofluid flow over a nonlinear surface with motile microorganism: Application in bioprocessing thermal engineering. Case Studies in Thermal Engineering, 49: 103285. https://doi.org/10.1016/j.csite.2023.103285   [Google Scholar]
  20. Maatoug S, Khan SU, Abbas T, Haq EU, Ghachem K, Kolsi L, and Abbasi A (2023). A lubricated stagnation point flow of nanofluid with heat and mass transfer phenomenon: Significance to hydraulic systems. Journal of the Indian Chemical Society, 100(1): 100825. https://doi.org/10.1016/j.jics.2022.100825   [Google Scholar]
  21. Mabood F, Khan SU, and Tlili I (2020). Numerical simulations for swimming of gyrotactic microorganisms with Williamson nanofluid featuring Wu’s slip, activation energy and variable thermal conductivity. Applied Nanoscience, 13: 131–144. https://doi.org/10.1007/s13204-020-01548-y   [Google Scholar]
  22. Mebarek-Oudina F and Chabani I (2023). Review on nano enhanced PCMs: insight on nePCM application in thermal management/storage systems. Energies, 16(3): 1066. https://doi.org/10.3390/en16031066   [Google Scholar]
  23. Patil PM, Goudar B, and Momoniat E (2023). Magnetized bioconvective micropolar nanofluid flow over a wedge in the presence of oxytactic microorganisms. Case Studies in Thermal Engineering, 49: 103284. https://doi.org/10.1016/j.csite.2023.103284   [Google Scholar]
  24. Rafique K, Mahmood Z, and Khan U (2023). Mathematical analysis of MHD hybrid nanofluid flow with variable viscosity and slip conditions over a stretching surface. Materials Today Communications, 36: 106692. https://doi.org/10.1016/j.mtcomm.2023.106692   [Google Scholar]
  25. Shamshuddin MD, Shahzad F, Jamshed W, Bég OA, Eid MR, and Bég TA (2023). Thermo-solutal stratification and chemical reaction effects on radiative magnetized nanofluid flow along an exponentially stretching sensor plate: Computational analysis. Journal of Magnetism and Magnetic Materials, 565: 170286. https://doi.org/10.1016/j.jmmm.2022.170286   [Google Scholar]
  26. Sharma BK, Kumawat C, and Bhatti MM (2023a). Optimizing energy generation in power-law nanofluid flow through curved arteries with gold nanoparticles. Numerical Heat Transfer, Part A: Applications, 85(18): 3058–3090. https://doi.org/10.1080/10407782.2023.2232123   [Google Scholar]
  27. Sharma BK, Sharma P, Mishra NK, Noeiaghdam S, and Fernandez-Gamiz U (2023b). Bayesian regularization networks for micropolar ternary hybrid nanofluid flow of blood with homogeneous and heterogeneous reactions: Entropy generation optimization. Alexandria Engineering Journal, 77: 127-148. https://doi.org/10.1016/j.aej.2023.06.080   [Google Scholar]
  28. Sheikholeslami M, Khalili Z, Scardi P, and Ataollahi N (2023). Concentrated solar photovoltaic cell equipped with thermoelectric layer in presence of nanofluid flow within porous heat sink: Impact of dust accumulation. Sustainable Cities and Society, 98: 104866. https://doi.org/10.1016/j.scs.2023.104866   [Google Scholar]
  29. Zheng LC, Jin X, Zhang XX, and Zhang JH (2013). Unsteady heat and mass transfer in MHD flow over an oscillatory stretching surface with Soret and Dufour effects. Acta Mechanica Sinica, 29(5): 667-675. https://doi.org/10.1007/s10409-013-0066-6   [Google Scholar]