International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 6 (June 2024), Pages: 178-193

----------------------------------------------

 Original Research Paper

Mineralogical transformations in the Fe-laterite profiles of Saudi Arabia: A study of weathering dynamics and secondary lateritization

 Author(s): 

 Rami A. Bakhsh 1, Ali A. Mesaed 2, 3, *

 Affiliation(s):

 1Department of Mineral Resources and Rocks, Faculty of Earth Sciences, King Abdulaziz University, P.O. Box 80206, Jeddah 21589, Saudi Arabia
 2Geo-Exploration Techniques Department, Faculty of Earth Sciences, King Abdulaziz University, P.O. Box 80206, Jeddah 21589, Saudi Arabia
 3Geology Department, Faculty of Sciences, Cairo University, Giza, Egypt

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-3237-8406

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.06.020

 Abstract

This study examines an iron-rich laterite profile, 4 to 9 meters thick, located between the ancient Precambrian Arabian Shield rocks and the younger Phanerozoic layers in Saudi Arabia. The profile begins with hard parent rocks composed of quartz diorite and gabbro containing iron-silicate. As these rocks weather, they become progressively softer and more clay-like, forming slightly and highly weathered argillaceous rocks. The Fe-laterite profile includes three main layers: the original parent rocks, the slightly altered rocks (saprolite), and the highly altered argillaceous rocks at the top. Samples from different layers of the weathering profile were collected and analyzed for their mineral content. The original quartz diorite and gabbro primarily consist of feldspars, hornblende, chlorite, and quartz. In the slightly altered layer, the hornblende and chlorite expand and peel apart, while the feldspar crystals transform into kaolinite and sericite. In the highly altered top layer, the remaining iron-silicate minerals show significant curling and breaking apart, and the surrounding clay becomes more uniform, composed mainly of mixed dark iron-oxyhydroxides and a light aluminum- and silicon-rich gel with small amounts of quartz. The study explores the progressive stages of weathering, including: a) Initial breakdown of iron-silicate minerals through hydrolysis and oxidation, b) Further destruction of these minerals and the formation of goethite, hematite, and kaolinite, c) Final stages where kaolinite and small microcrystalline quartz aggregates form from silica leached from higher layers, a process known as secondary lateritization.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Fe-laterite, Weathering profile, Mineralogical changes, Hydrolysis and oxidation, Secondary lateritization

 Article history

 Received 7 January 2024, Received in revised form 21 May 2024, Accepted 9 June 2024

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Bakhsh RA and Mesaed AA (2024). Mineralogical transformations in the Fe-laterite profiles of Saudi Arabia: A study of weathering dynamics and secondary lateritization. International Journal of Advanced and Applied Sciences, 11(6): 178-193

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 

 Tables

 No Table

----------------------------------------------   

 References (31)

  1. Berner RA and Schott J (1982). Mechanism of pyroxene and amphibole weathering; II, Observations of soil grains. American Journal of Science, 282(8): 1214-1231. https://doi.org/10.2475/ajs.282.8.1214   [Google Scholar]
  2. Berner RA, Sjöberg EL, Velbel MA, and Krom MD (1980). Dissolution of pyroxenes and amphiboles during weathering. Science, 207(4436): 1205-1206. https://doi.org/10.1126/science.207.4436.1205   [Google Scholar] PMid:17776857
  3. Collins AS and Pisarevsky SA (2005). Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens. Earth-Science Reviews, 71(3-4): 229-270. https://doi.org/10.1016/j.earscirev.2005.02.004   [Google Scholar]
  4. Doebrich JL, Al-Jehani AM, Siddiqui AA, Hayes TS, Saleh Y, Wooden JL, and Al-Shammari A (2007). Geology and mineral resources of the Ar Rayn terrane, eastern Arabian Shield, Kingdom of Saudi Arabia. Precambrian Research, 158: 17-50. https://doi.org/10.1016/j.precamres.2007.04.003   [Google Scholar]
  5. Dong H, Peacor DR, and Murphy SF (1998). TEM study of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile. Geochimica et Cosmochimica Acta, 62(11): 1881-1887. https://doi.org/10.1016/S0016-7037(98)00096-9   [Google Scholar]
  6. Drever JI (1971). Chemical weathering in a subtropical igneous terrain, Rio Ameca, Mexico. Journal of Sedimentary Research, 41(4): 951-961. https://doi.org/10.1306/74D723C4-2B21-11D7-8648000102C1865D   [Google Scholar]
  7. El Aref MM (1993). Pedogenesis and related gibbsite and natroalunite formation in Um Gereifat area, Red Sea coastal zone, Egypt. Egyptian Journal of Geology, 37(2): 307-333.   [Google Scholar]
  8. El-Hinnawi E, Abayazeed SD, and Khalil AS (2021). Spheroidal weathering of basalt from Gebel Qatrani, Fayum Depression, Egypt. Bulletin of the National Research Centre, 45: 1. https://doi.org/10.1186/s42269-020-00453-2   [Google Scholar]
  9. Eswaran H (1979). The alteration of plagioclases and augites under differing pedo‐environmental conditions. Journal of Soil Science, 30(3): 547-555. https://doi.org/10.1111/j.1365-2389.1979.tb01008.x   [Google Scholar]
  10. Farmer VC, Russell JD, McHardy WJ, Newman ACD, Ahlrichs JL, and Rimsaite JYH (1971). Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites. Mineralogical Magazine, 38(294): 121-137. https://doi.org/10.1180/minmag.1971.038.294.01   [Google Scholar]
  11. Germann K, Schwarz T, and Wipki M (1994). Mineral deposit formation in Phanerozoic sedimentary basins of north-east Africa: The contribution of weathering. Geologische Rundschau, 83: 787-798. https://doi.org/10.1007/BF00251076   [Google Scholar]
  12. Grandstaff DT (1977). Some kinetics of bronzite orthopyroxene dissolution. Geochimica et Cosmochimica Acta, 41(8): 1097-1103. https://doi.org/10.1016/0016-7037(77)90104-1   [Google Scholar]
  13. Hampl FJ, Schiperski F, Schwerdhelm C, Stroncik N, Bryce C, von Blanckenburg F, and Neumann T (2023). Feedbacks between the formation of secondary minerals and the infiltration of fluids into the regolith of granitic rocks in different climatic zones (Chilean Coastal Cordillera). Earth Surface Dynamics, 11(3): 511-528. https://doi.org/10.5194/esurf-11-511-2023   [Google Scholar]
  14. He X, Zhou H, Wan J, Guo Y, and Zhao H (2023). The effects of rainfall on groundwater hydrogeochemistry and chemical weathering. Environmental Science and Pollution Research, 30(5): 12152-12168. https://doi.org/10.1007/s11356-022-23016-6   [Google Scholar] PMid:36104647
  15. Johnson PR (2005). Proterozoic geology of western Saudi Arabia, northeastern sheet (revised, digital edition). Saudi Geological Survey Open-File Report SGS-OF-2005-2.   [Google Scholar]
  16. Johnson PR (2006). Explanatory notes to the map of Proterozoic geology of western Saudi Arabia. Saudi Geological Survey Technical Report SGS-TR-2006-4.   [Google Scholar]
  17. Kukillaya JP and Narayanan T (2014). Role of weathering of ferromagnesian minerals and surface water irrigation in evolving and modifying chemistry of groundwater in Palakkad district, Kerala, with special reference to its fluoride content. Journal of the Geological Society of India, 84: 579-589. https://doi.org/10.1007/s12594-014-0165-4   [Google Scholar]
  18. Luce RW, Bartlett RW, and Parks GA (1972). Dissolution kinetics of magnesium silicates. Geochimica et Cosmochimica Acta, 36(1): 35-50. https://doi.org/10.1016/0016-7037(72)90119-6   [Google Scholar]
  19. Mesaed AA (1995). Geological, mineralogical and geochemical studies on the ironstones and related lateritic products of Aswan region, Egypt. Ph.D. Dissertation, Cairo University, Egypt.   [Google Scholar]
  20. Meunier A and Velde B (1979). Weathering mineral facies in altered granites: The importance of local small-scale equilibria. Mineralogical Magazine, 43(326): 261-268. https://doi.org/10.1180/minmag.1979.043.326.08   [Google Scholar]
  21. Millot G (1964). Geologie des Argiles. Masson et Cie: Editeurs, Paris, France.   [Google Scholar]
  22. Murphy SF, Brantley SL, Blum AE, White AF, and Dong H (1998). Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: II. Rate and mechanism of biotite weathering. Geochimica et Cosmochimica Acta, 62(2): 227-243. https://doi.org/10.1016/S0016-7037(97)00336-0   [Google Scholar]
  23. Nahon D (1987). Microgeochemical environments in lateritic weathering. In: Tardy Y and Clement Rodringer R (Eds.), Geochemistry and mineral formation in the earth surface: 141-156. Editorial CSIC-CSIC Press, Granada, Spain.   [Google Scholar]
  24. Nahon DB and Colin F (1982). Chemical weathering of orthopyroxenes under lateritic conditions. American Journal of Science, 282(8): 1232-1243. https://doi.org/10.2475/ajs.282.8.1232   [Google Scholar]
  25. Price JR and Velbel MA (2014). Rates of biotite weathering, and clay mineral transformation and neoformation, determined from watershed geochemical mass-balance methods for the Coweeta Hydrologic Laboratory, Southern Blue Ridge Mountains, North Carolina, USA. Aquatic Geochemistry, 20: 203-224. https://doi.org/10.1007/s10498-013-9190-y   [Google Scholar]
  26. Siever R and Woodford N (1979). Dissolution kinetics and the weathering of mafic minerals. Geochimica et Cosmochimica Acta, 43(5): 717-724. https://doi.org/10.1016/0016-7037(79)90255-2   [Google Scholar]
  27. Stacey JS, Stoeser DB, Greenwood WR, and Fischer LB (1984). U-Pb zircon geochronology and geological evolution of the Halaban-Al Amar region of the Eastern Arabian Shield, Kingdom of Saudi Arabia. Journal of the Geological Society, 141(6): 1043-1055. https://doi.org/10.1144/gsjgs.141.6.1043   [Google Scholar]
  28. Stoeser DB and Stacey JS (1988). Evolution, U-Pb geochronology, and isotope geology of the Pan-African Nabitah orogenic belt of the Saudi Arabian Shield. In: El-Gaby S and Greiling RO (Eds.), The Pan-African belt of Northeast Africa and adjacent areas: Tectonic evolution and economic aspects of a late Proterozoic Oregon: 227-288. Braunschweig/ Wiesbaden, Berlin, Germany.   [Google Scholar]
  29. Walker TR, Ribbe PH, and Honea RM (1967). Geochemistry of hornblende alteration in Pliocene red beds, Baja California, Mexico. Geological Society of America Bulletin, 78(8): 1055-1060. https://doi.org/10.1130/0016-7606(1967)78[1055:GOHAIP]2.0.CO;2   [Google Scholar]
  30. Xi J, Yang Y, He H, Xian H, Tan W, Li R, Zhu J, and Xu H (2024). Microstructural and compositional evolutions during transformation from biotite to berthierine: Implications for phyllosilicate alteration processes. American Mineralogist, 109(4): 656-666. https://doi.org/10.2138/am-2023-8984   [Google Scholar]
  31. Yi Z, Fu W, Zhao Q, Lu H, Fu X, Li P, Luo P, Han Z, Tan Z, and Xu C (2023). Characterization of nano-minerals and nanoparticles in supergene rare earth element mineralization related to chemical weathering of granites. American Mineralogist, 108(8): 1461-1475. https://doi.org/10.2138/am-2022-8543   [Google Scholar]