International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 12 (December 2024), Pages: 225-231

----------------------------------------------

 Original Research Paper

Fuzzy logic and machine learning for diabetes risk prediction using modifiable factors

 Author(s): 

 Rabia Khushal *, Ubaida Fatima

 Affiliation(s):

 Department of Mathematics, NED University of Engineering and Technology Karachi, Karachi, Pakistan

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0009-0002-5437-3032

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.12.025

 Abstract

Diabetes mellitus, a global health concern, includes type 1 diabetes, with an uncontrollable risk, and type 2 diabetes, where risk can be managed through lifestyle modifications. This study examines the impact of modifiable risk factors—diet, physical activity, and body mass index (BMI)—on type 2 diabetes development. Using fuzzy logic, binary variables from a healthcare diabetes dataset were transformed into a fuzzy format, generating three output classes: "no diabetes risk," "possible diabetes risk," and "diabetes risk present." The intermediate class, "possible diabetes risk," serves as an alert for adopting healthier lifestyles to mitigate risk. Machine learning was applied to both the original and fuzzy-transformed datasets. While the original dataset provided binary outputs with moderate accuracy and higher computation times, the fuzzy-transformed dataset yielded more nuanced predictions, reduced computation time, and improved classifier performance. This approach enhances diabetes risk assessment and supports proactive interventions.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Diabetes risk, Fuzzy logic, Modifiable factors, Machine learning, Lifestyle intervention

 Article history

 Received 28 August 2024, Received in revised form 14 November 2024, Accepted 29 November 2024

 Acknowledgment

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Khushal R and Fatima U (2024). Fuzzy logic and machine learning for diabetes risk prediction using modifiable factors. International Journal of Advanced and Applied Sciences, 11(12): 225-231

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 

----------------------------------------------   

 References (33)

  1. Abdullah AA, Fadil NS, and Khairunizam W (2018). Development of fuzzy expert system for diagnosis of diabetes. In the International Conference on Computational Approach in Smart Systems Design and Applications, IEEE, Kuching, Malaysia: 1-8. https://doi.org/10.1109/ICASSDA.2018.8477635   [Google Scholar]
  2. Ali ML, Sadi MS, and Goni MO (2024). Diagnosis of heart diseases: A fuzzy-logic-based approach. PLOS ONE, 19(2): e0293112. https://doi.org/10.1371/journal.pone.0293112   [Google Scholar] PMid:38319925 PMCid:PMC10846727
  3. Alnufaie L (2023). Fuzzy nonsingular fast terminal sliding mode controller for a robotic system. International Journal of Advanced and Applied Sciences, 10(10): 166-173. https://doi.org/10.21833/ijaas.2023.10.019   [Google Scholar]
  4. Barrett KE, Barman SM, and Boitano S (2019). Ganong's review of medical physiology. McGraw-Hill Education, New York, USA.   [Google Scholar]
  5. Begum S and Ashok MV (2024). A novel approach to mitigate academic underachievement in higher education: Feature selection, classifier performance, and interpretability in predicting student performance. International Journal of Advanced and Applied Sciences, 11(5): 140-150. https://doi.org/10.21833/ijaas.2024.05.015   [Google Scholar]
  6. Conte C, Cipponeri E, and Roden M (2024). Diabetes mellitus, energy metabolism, and COVID-19. Endocrine Reviews, 45(2): 281-308. https://doi.org/10.1210/endrev/bnad032   [Google Scholar] PMid:37934800 PMCid:PMC10911957
  7. Fatima U, Hina S, and Wasif M (2023). A novel global clustering coefficient-dependent degree centrality (GCCDC) metric for large network analysis using real-world datasets. Journal of Computational Science, 70: 102008. https://doi.org/10.1016/j.jocs.2023.102008   [Google Scholar]
  8. Gautam Goswami N, Karnad S, Sampathila N, Bairy GM, Chadaga K, and Swathi KS (2023). Current trends of artificial intelligence and applications in digital pathology: A comprehensive review. International Journal of Advanced and Applied Sciences, 10(12): 29-41. https://doi.org/10.21833/ijaas.2023.12.004   [Google Scholar]
  9. Godfrey K, Rushingabigwi G, Habtie AB, and Gatare I (2023). Fuzzy logic-based driven model for detection and prediction of diabetes mellitus type 2. In the IEEE International Conference on Advanced Systems and Emergent Technologies, IEEE, Hammamet, Tunisia: 1-5. https://doi.org/10.1109/IC_ASET58101.2023.10150948   [Google Scholar]
  10. Guyton AC and Hall JE (2011). Textbook of medical physiology. Saunders Elsevier, Philadelphia, USA.   [Google Scholar]
  11. Hasan N, Islam MS, and Hayat MT (2024). A fuzzy logic approach for predicting gestational diabetes mellitus using risk factors. In the 6th International Conference on Electrical Engineering and Information and Communication Technology, IEEE, Dhaka, Bangladesh: 1479-1484. https://doi.org/10.1109/ICEEICT62016.2024.10534451   [Google Scholar]
  12. Hentout A, Maoudj A, and Aouache M (2023). A review of the literature on fuzzy-logic approaches for collision-free path planning of manipulator robots. Artificial Intelligence Review, 56(4): 3369-3444. https://doi.org/10.1007/s10462-022-10257-7   [Google Scholar]
  13. Husna C, Akmal A, Syarif H, and Agustina S (2024). Exploring the connection between diabetes duration, HbA1c levels, and peripheral neuropathy in type 2 diabetes patients. International Journal of Advanced and Applied Sciences, 11(4): 236-240. https://doi.org/10.21833/ijaas.2024.04.025   [Google Scholar]
  14. Janjua JI, Ahmad R, Abbas S, Mohammed AS, Khan MS, Daud A, Abbas T, and Khan MA (2024). Enhancing smart grid electricity prediction with the fusion of intelligent modeling and XAI integration. International Journal of Advanced and Applied Sciences, 11(5): 230-248. https://doi.org/10.21833/ijaas.2024.05.025   [Google Scholar]
  15. Kaul K, Tarr JM, Ahmad SI, Kohner EM, and Chibber R (2013). Introduction to diabetes mellitus. In: Ahmad SI (Ed.), Diabetes: Advances in experimental medicine and biology: 1–11. Volume 771, Springer, New York, USA. https://doi.org/10.1007/978-1-4614-5441-0_1   [Google Scholar] PMid:23393665
  16. Khushal R and Fatima U (2024a). Fuzzy machine learning logic utilization on hormonal imbalance dataset. Computers in Biology and Medicine, 174: 108429. https://doi.org/10.1016/j.compbiomed.2024.108429    [Google Scholar]
  17. Khushal R and Fatima U (2024b). Fuzzy computing in healthcare. In the International Visualization, Informatics and Technology Conference, IEEE, Kuala Lumpur, Malaysia: 78-83. https://doi.org/10.1109/IVIT62102.2024.10692652   [Google Scholar]
  18. Khwayyit RI and Suhhiem MH (2024). Applying the fuzzy homotopy analysis method to solve fuzzy initial value problems with variable coefficients. International Journal of Advanced and Applied Sciences, 11(4): 85-92. https://doi.org/10.21833/ijaas.2024.04.010   [Google Scholar]
  19. Knudsen JG, Hamilton A, Ramracheya R, Tarasov AI, Brereton M, Haythorne E, Chibalina MV, Spegel P, Mulder H, Zhang Q, and Ashcroft FM et al. (2019). Dysregulation of glucagon secretion by hyperglycemia-induced sodium-dependent reduction of ATP production. Cell Metabolism, 29(2): 430-442. https://doi.org/10.1016/j.cmet.2018.10.003   [Google Scholar] PMid:30415925 PMCid:PMC6370947
  20. Kottarathil P (2020). Polycystic ovary syndrome (PCOS). Available online at: https://www.kaggle.com/datasets/prasoonkottarathil/polycystic-ovary-syndrome-pcos 
  21. Kulkarni A (2024). Osteoporosis risk prediction. Available online at: https://www.kaggle.com/datasets/amitvkulkarni/lifestyle-factors-influencing-osteoporosis 
  22. Luna-Benoso B, Martínez-Perales JC, Cortés-Galicia J, and Morales-Rodríguez US (2024). Detection and risk assessment of COVID-19 through machine learning. International Journal of Advanced and Applied Sciences, 11(1): 207-216. https://doi.org/10.21833/ijaas.2024.01.025   [Google Scholar]
  23. Masrom S, Tarmizi MA, Halid S, Rahman RA, Rahman ASA, and Ibrahim R (2023). Machine learning in predicting anti-money laundering compliance with protection motivation theory among professional accountants. International Journal of Advanced and Applied Sciences, 10(7): 48-53. https://doi.org/10.21833/ijaas.2023.07.007   [Google Scholar]
  24. Modak SKSS and Jha VK (2024). Diabetes prediction model using machine learning techniques. Multimedia Tools and Applications, 83(13): 38523-38549. https://doi.org/10.1007/s11042-023-16745-4   [Google Scholar]
  25. Modi K, Singh I, and Kumar Y (2023). A comprehensive analysis of artificial intelligence techniques for the prediction and prognosis of lifestyle diseases. Archives of Computational Methods in Engineering, 30(8): 4733-4756. https://doi.org/10.1007/s11831-023-09957-2   [Google Scholar]
  26. Moiz A, Fatima U, and Haque MZU (2024). A new framework for pinpointing crucial proteins in protein-protein interaction networks. IEEE Access, 12: 108425-108444. https://doi.org/10.1109/ACCESS.2024.3437215   [Google Scholar]
  27. Mustaffa NA, Zahari SM, Farhana NA, Nasir N, and Azil AH (2024). Forecasting the incidence of dengue fever in Malaysia: A comparative analysis of seasonal ARIMA, dynamic harmonic regression, and neural network models. International Journal of Advanced and Applied Sciences, 11(1): 20-31. https://doi.org/10.21833/ijaas.2024.01.003   [Google Scholar]
  28. Nandan TK, Ramesh G, Reddy GS, ShivaRam G, Anusha M, and Shafi S (2024). Predicting diabetes with integrated health-lifestyle fusion. In the 1st International Conference on Trends in Engineering Systems and Technologies, IEEE, Kochi, India: 1-6. https://doi.org/10.1109/ICTEST60614.2024.10576176   [Google Scholar]
  29. NIDDK (2022). Risk factors for type 2 diabetes. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, USA.   [Google Scholar]
  30. Nurhasanah N, Juanita J, and Putra A (2024). Anxiety and diet among elderly people suffering from diabetes mellitus in Banda Aceh, Indonesia: A correlational study. International Journal of Advanced and Applied Sciences, 11(1): 123-128. https://doi.org/10.21833/ijaas.2024.01.015   [Google Scholar]
  31. Talukder MA, Islam MM, Uddin MA, Kazi M, Khalid M, Akhter A, and Ali Moni M (2024). Toward reliable diabetes prediction: Innovations in data engineering and machine learning applications. Digital Health. https://doi.org/10.1177/20552076241271867   [Google Scholar] PMid:39175924 PMCid:PMC11339751
  32. Taxirovich DA, Ulugbekovna RN, and Abduxalimova YJ (2024). Status and prospects for the fight against diabetes mellitus. Educational Research in Universal Sciences, 3(1): 4-9.   [Google Scholar]
  33. Zadeh LA (1965). Fuzzy sets. Information and Control, 8(3): 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X   [Google Scholar]