International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 11 (November 2024), Pages: 92-98

----------------------------------------------

 Original Research Paper

Statistical edge detection with an application to intraventricular hemorrhage

 Author(s): 

 Sameer A. H. Al-Subh *, Kamal A. Al-Banawi

 Affiliation(s):

 Department of Mathematics and Statistics, Mutah University, Al-Karak, Jordan

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0009-0006-2973-6929

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.11.010

 Abstract

The goal of edge detection is to determine whether a point in an image is an edge point. This is done by applying first and second derivative operators to detect the greatest change in image intensity. In this paper, we propose a new method where the threshold, represented by the average a̅, is calculated within a neighborhood of I(x1,x2). This approach not only reduces processing time but also ensures that no pixels are missed. Pixels below the threshold are replaced after enhancement. We extend this work by applying the Canny edge detector (CED) to detect boundaries in MRI images of abnormal brains affected by intraventricular hemorrhage (IVH). Two thresholds are used: the hysteresis threshold in the CED and our proposed statistical threshold, which works alongside traditional edge operators like Sobel, Prewitt, and Laplacian.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Edge detection, Derivative operators, Threshold, Canny edge detector, Intraventricular hemorrhage

 Article history

 Received 21 May 2024, Received in revised form 14 September 2024, Accepted 28 October 2024

 Acknowledgment

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Al-Subh SAH and Al-Banawi KA (2024). Statistical edge detection with an application to intraventricular hemorrhage. International Journal of Advanced and Applied Sciences, 11(11): 92-98

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 

 Tables

 No Table

----------------------------------------------   

 References (28)

  1. Adams RA (1995). Calculus of several variables. 3rd Edition, Addison Wesley Publishing Company, Boston, USA.   [Google Scholar]
  2. Alnaggar OA, Jagadale BN, Saif MA, Ghaleb OA, Ahmed AA, Aqlan HA, and Al-Ariki HD (2024). Efficient artificial intelligence approaches for medical image processing in healthcare: Comprehensive review, taxonomy, and analysis. Artificial Intelligence Review, 57: 221. https://doi.org/10.1007/s10462-024-10814-2   [Google Scholar]
  3. Arboix A, García-Eroles L, Vicens A, Oliveres M, and Massons J (2012). Spontaneous primary intraventricular hemorrhage: Clinical features and early outcome. International Scholarly Research Notices, 2012: 498303. https://doi.org/10.5402/2012/498303   [Google Scholar] PMid:22966468 PMCid:PMC3433135
  4. Canny J (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6): 679-698. https://doi.org/10.1109/TPAMI.1986.4767851   [Google Scholar]
  5. Cao YN (2019). Application of canny edge detection algorithm based on Gaussian filter in medical images. Chinese Journal of Endemic Disease Control, 34(5): 54-55.   [Google Scholar]
  6. Corwin LJ and Szczarba RH (1979). Calculus in vector spaces. M. Dekker, New York, USA.   [Google Scholar]
  7. Davis HF and Snider AD (1995). Introduction to vector analysis. William C. Brown Publisher, Dubuque, USA.   [Google Scholar]
  8. Gao W, Zhang X, Yang L, and Liu H (2010). An improved Sobel edge detection. In the 3rd International conference on computer science and information technology 5: 67-71. IEEE, Chengdu, China. https://doi.org/10.1109/ICCSIT.2010.5563693   [Google Scholar]
  9. Huang JS and Tseng DH (1988). Statistical theory of edge detection. Computer Vision, Graphics, and Image Processing, 43(3): 337-346. https://doi.org/10.1016/0734-189X(88)90087-4   [Google Scholar]
  10. Jogi MK and Srinivasa Rao Y (2022). Gray scale image enhancement with CPSO algorithm for medical applications. In: Sharma H, Shrivastava V, Kumari Bharti K, and Wang L (Eds.), Communication and intelligent systems. Lecture notes in networks and systems, Vol 461. Springer, Singapore, Singapore. https://doi.org/10.1007/978-981-19-2130-8_68   [Google Scholar]
  11. Lim DH (2006). Robust edge detection in noisy images. Computational Statistics and Data Analysis, 50(3): 803-812. https://doi.org/10.1016/j.csda.2004.10.005   [Google Scholar]
  12. Liu J, Luan X, Tian X, and Sun Y (2011). Morphological edge detection method of multi-structure and multi-scale based on image fusion in wavelet domain. In: Yang D (Ed.), Informatics in control, automation and robotics. Lecture notes in electrical engineering, Vol 133. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-25992-0_91   [Google Scholar]
  13. Lu F, Tang C, Liu T, Zhang Z, and Li L (2023). Multi-attention segmentation networks combined with the Sobel operator for medical images. Sensors, 23(5): 2546. https://doi.org/10.3390/s23052546   [Google Scholar] PMid:36904754 PMCid:PMC10007317
  14. Mao R (2017). A swarm intelligence based medical image edge detection method with adaptive gradient. Journal of Medical Imaging and Health Informatics, 7(5): 1087-1092. https://doi.org/10.1166/jmihi.2017.2141   [Google Scholar]
  15. Miller RK and Zeuch N (1989). Machine vision (competitive manufacturing). Springer, Berlin, Germany.   [Google Scholar]
  16. Prewitt JM (1970). Object enhancement and extraction. In: Lipkin BS (Ed.), Picture processing and Psychopictorics: 75-148. Elsevier, Amsterdam, Netherlands.   [Google Scholar]
  17. Qian HY (2019). Medical image edge detection algorithm based on improved Canny operator. Software Guide, 18(2): 45-48.   [Google Scholar]
  18. She Y (2009). Thresholding-based iterative selection procedures for model selection and shrinkage. Electronic Journal of Statistics, 3: 384-415. https://doi.org/10.1214/08-EJS348   [Google Scholar]
  19. Shokhan MH (2014). An efficient approach for improving canny edge detection algorithm. International Journal of Advances in Engineering and Technology, 7(1): 59-65.   [Google Scholar]
  20. Sun R, Lei T, Chen Q, Wang Z, Du X, Zhao W, and Nandi AK (2022). Survey of image edge detection. Frontiers in Signal Processing, 2: 826967. https://doi.org/10.3389/frsip.2022.826967   [Google Scholar]
  21. Tan W, Tiwari P, Pandey HM, Moreira C, and Jaiswal AK (2020). Multimodal medical image fusion algorithm in the era of big data. Neural Computing and Applications. https://doi.org/10.1007/s00521-020-05173-2   [Google Scholar]
  22. Trujillo-Pino A, Krissian K, Alemán-Flores M, and Santana-Cedrés D (2013). Accurate subpixel edge location based on partial area effect. Image and Vision Computing, 31(1): 72-90. https://doi.org/10.1016/j.imavis.2012.10.005   [Google Scholar]
  23. Ünver HM, Kökver Y, Duman E, and Erdem OA (2019). Statistical edge detection and circular Hough transform for optic disk localization. Applied Sciences, 9(2): 350. https://doi.org/10.3390/app9020350   [Google Scholar]
  24. Wang Q and Ma Q (2024). Super‐resolution reconstruction algorithm for medical images by fusion of wavelet transform and multi‐scale adaptive feature selection. IET Image Processing, 18: 4297–4309. https://doi.org/10.1049/ipr2.13252   [Google Scholar]
  25. Wei J, Mao S, Dai J, Wang Z, Huang W, and Yu Y (2022). A faster and more accurate iterative threshold algorithm for signal reconstruction in compressed sensing. Sensors, 22(11): 4218. https://doi.org/10.3390/s22114218   [Google Scholar] PMid:35684839 PMCid:PMC9185297
  26. You N, Han L, Liu Y, Zhu D, Zuo X, and Song W (2023). Research on wavelet transform modulus maxima and OTSU in edge detection. Applied Sciences, 13(7): 4454. https://doi.org/10.3390/app13074454   [Google Scholar]
  27. Yunhong S, Shilei Y, Xiaojing Z, and Jinhua Y (2022). Edge detection algorithm of MRI medical image based on artificial neural network. Procedia Computer Science, 208: 136-144. https://doi.org/10.1016/j.procs.2022.10.021   [Google Scholar]
  28. Zhou D and Yuan Z (2024). A new class biorthogonal spline wavelet for image edge detection. ArXiv Preprint ArXiv:2406.08285. https://doi.org/10.48550/arXiv.2406.08285   [Google Scholar]