International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 10 (October 2024), Pages: 196-205

----------------------------------------------

 Original Research Paper

Improving fog resource utilization with a dynamic round-robin load balancing approach

 Author(s): 

 Entisar S. Alkayal 1, *, Nesreen M. Alharbi 2, Reem Alwashmi 2, Waleed Ali 1

 Affiliation(s):

 1Information Technology Department, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
 2Computer Science Department, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-6617-1051

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.10.022

 Abstract

In fog computing, load balancing is an important research problem. It focuses on efficiently assigning tasks to fog nodes and minimizing delay in real-time applications. The traditional round-robin algorithm assigns tasks in a rotating manner among fog nodes, but it can send tasks to the cloud too early, leading to increased delays. To solve this problem, this paper introduces an improved round-robin algorithm that takes a dynamic approach to balancing the use of fog resources. The new model aims to improve load balancing in fog computing by distributing tasks more evenly among fog nodes, reducing dependence on cloud computing, and making better use of fog resources. The improved algorithm helps fog computing systems run more efficiently, reduces delays in real-time applications, and lowers the costs associated with cloud use. The results show that the proposed load balancing algorithm is key to optimizing fog resource use, improving system efficiency, and reducing task completion times in distributed computing systems.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Load balancing, Fog computing, Round-robin, Latency reduction, Resource optimization

 Article history

 Received 10 June 2024, Received in revised form 5 October 2024, Accepted 13 October 2024

 Acknowledgment

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (GPIP: 528-865-2024).  The authors gratefully acknowledge the DSR for their technical and financial support.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Alkayal ES, Alharbi NM, Alwashmi R, and Ali W (2024). Improving fog resource utilization with a dynamic round-robin load balancing approach. International Journal of Advanced and Applied Sciences, 11(10): 196-205

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 

 Tables

 Table 1 Table 2 Table 3 

----------------------------------------------   

 References (23)

  1. Afzal S and Kavitha G (2019). Load balancing in cloud computing–A hierarchical taxonomical classification. Journal of Cloud Computing, 8: 22. https://doi.org/10.1186/s13677-019-0146-7   [Google Scholar]
  2. Ali S and Alubady R (2023). RWRR: Remind weighted rounding robin for load balancing in fog computing. In the 7th International Symposium on Innovative Approaches in Smart Technologies, IEEE, Istanbul, Turkey: 1-7. https://doi.org/10.1109/ISAS60782.2023.10391499   [Google Scholar]
  3. Ameen JN and Begum SJ (2022). Evolutionary algorithm based adaptive load balancing (EA-ALB) in cloud computing framework. Intelligent Automation and Soft Computing, 34(2): 1281-1294. https://doi.org/10.32604/iasc.2022.025137   [Google Scholar]
  4. Choudhary R and Kothari DA (2018). A novel technique for load balancing in cloud computing environment. International Journal of Software and Hardware Research in Engineering, 6(6): 1-5.   [Google Scholar]
  5. Devi DC and Uthariaraj VR (2016). Load balancing in cloud computing environment using improved weighted round robin algorithm for nonpreemptive dependent tasks. The Scientific World Journal, 2016: 3896065. https://doi.org/10.1155/2016/3896065   [Google Scholar] PMid:26955656 PMCid:PMC4756214
  6. Garcia-Carballeira F, Calderon A, and Carretero J (2021). Enhancing the power of two choices load balancing algorithm using round robin policy. Cluster Computing, 24(2): 611-624. https://doi.org/10.1007/s10586-020-03139-6   [Google Scholar]
  7. Ghosh S and Banerjee C (2018). Dynamic time quantum priority based round robin for load balancing in cloud environment. In the 4th International Conference on Research in Computational Intelligence and Communication Networks, IEEE, Kolkata, India: 33-37. https://doi.org/10.1109/ICRCICN.2018.8718694   [Google Scholar] PMCid:PMC6191404
  8. Harish G, Nagaraju S, Harish B, and Shaik M (2019). A review on fog computing and its applications. International Journal of Innovative Technology and Exploring Engineering, 8(6C2): 2278-3075.   [Google Scholar]
  9. Haryani N and Jagli D (2014). Dynamic method for load balancing in cloud computing. IOSR Journal of Computer Engineering (IOSR-JCE), 16(4): 23-28. https://doi.org/10.9790/0661-16442328   [Google Scholar]
  10. Hidayat T, Azzery Y, and Mahardiko R (2019). Load balancing network by using round robin algorithm: A systematic literature review. Jurnal Online Informatika, 4(2): 85-89. https://doi.org/10.15575/join.v4i2.446   [Google Scholar]
  11. Mishra SK, Sahoo B, and Parida PP (2020). Load balancing in cloud computing: A big picture. Journal of King Saud University-Computer and Information Sciences, 32(2): 149-158. https://doi.org/10.1016/j.jksuci.2018.01.003   [Google Scholar]
  12. Noman HM and Jasim MN (2021). A comparative performance analysis for static and dynamic load balancing techniques in software defined network environment. Journal of Physics: Conference Series, 1773: 012010. https://doi.org/10.1088/1742-6596/1773/1/012010   [Google Scholar]
  13. Ogundoyin SO and Kamil IA (2021). Optimization techniques and applications in fog computing: An exhaustive survey. Swarm and Evolutionary Computation, 66: 100937. https://doi.org/10.1016/j.swevo.2021.100937   [Google Scholar]
  14. Pakhrudin NSM, Kassim M, and Idris A (2023). Cloud service analysis using round-robin algorithm for quality-of-service aware task placement for Internet of Things services. International Journal of Electrical and Computer Engineering, 13(3): 3464-3473. https://doi.org/10.11591/ijece.v13i3.pp3464-3473   [Google Scholar]
  15. Prakash P, Darshaun KG, Yaazhlene P, Ganesh MV, and Vasudha B (2017). Fog computing: Issues, challenges and future directions. International Journal of Electrical and Computer Engineering, 7(6): 3669-3673. https://doi.org/10.11591/ijece.v7i6.pp3669-3673   [Google Scholar]
  16. Shafiq DA, Jhanjhi NZ, and Abdullah A (2022). Load balancing techniques in cloud computing environment: A review. Journal of King Saud University-Computer and Information Sciences, 34(7): 3910-3933. https://doi.org/10.1016/j.jksuci.2021.02.007   [Google Scholar]
  17. Sharma C, Sharma S, Kautish S, Alsallami SA, Khalil EM, and Mohamed AW (2022). A new median-average round robin scheduling algorithm: An optimal approach for reducing turnaround and waiting time. Alexandria Engineering Journal, 61(12): 10527-10538. https://doi.org/10.1016/j.aej.2022.04.006   [Google Scholar]
  18. Sinha G and Sinha D (2020). Enhanced weighted round robin algorithm to balance the load for effective utilization of resource in cloud environment. EAI Endorsed Transactions on Cloud Systems, 6(18): e4. https://doi.org/10.4108/eai.7-9-2020.166284   [Google Scholar]
  19. Sulimani H, Sulimani R, Ramezani F, Naderpour M, Huo H, Jan T, and Prasad M (2024). HybOff: A hybrid offloading approach to improve load balancing in fog environments. Journal of Cloud Computing, 13: 113. https://doi.org/10.1186/s13677-024-00663-3   [Google Scholar]
  20. Waghmode ST and Patil BM (2023). Adaptive load balancing in cloud computing environment. International Journal of Intelligent Systems and Applications in Engineering, 11(1s): 209-217.   [Google Scholar]
  21. Wang L and Lu G (2016). The dynamic sub-topology load balancing algorithm for data center networks. In the International Conference on Information Networking, IEEE, Kota Kinabalu, Malaysia: 268-273. https://doi.org/10.1109/ICOIN.2016.7427075   [Google Scholar]
  22. Wang X, Sun Y, and Ding D (2022). Adaptive dynamic programming for networked control systems under communication constraints: A survey of trends and techniques. International Journal of Network Dynamics and Intelligence, 1(1): 85-98. https://doi.org/10.53941/ijndi0101008   [Google Scholar]
  23. Xu R, Chen H, Liang X, and Wang H (2016). Priority-based constructive algorithms for scheduling agile earth observation satellites with total priority maximization. Expert Systems with Applications, 51: 195-206. https://doi.org/10.1016/j.eswa.2015.12.039   [Google Scholar]