
 International Journal of Advanced and Applied Sciences, 11(10) 2024, Pages: 196-205

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

196

Improving fog resource utilization with a dynamic round-robin load
balancing approach

Entisar S. Alkayal 1, *, Nesreen M. Alharbi 2, Reem Alwashmi 2, Waleed Ali 1

1Information Technology Department, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University,
Jeddah, Saudi Arabia
2Computer Science Department, Faculty of Computing and Information Technology-Rabigh, King Abdulaziz University, Jeddah,
Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 10 June 2024
Received in revised form
5 October 2024
Accepted 13 October 2024

In fog computing, load balancing is an important research problem. It focuses
on efficiently assigning tasks to fog nodes and minimizing delay in real-time
applications. The traditional round-robin algorithm assigns tasks in a
rotating manner among fog nodes, but it can send tasks to the cloud too
early, leading to increased delays. To solve this problem, this paper
introduces an improved round-robin algorithm that takes a dynamic
approach to balancing the use of fog resources. The new model aims to
improve load balancing in fog computing by distributing tasks more evenly
among fog nodes, reducing dependence on cloud computing, and making
better use of fog resources. The improved algorithm helps fog computing
systems run more efficiently, reduces delays in real-time applications, and
lowers the costs associated with cloud use. The results show that the
proposed load balancing algorithm is key to optimizing fog resource use,
improving system efficiency, and reducing task completion times in
distributed computing systems.

Keywords:
Load balancing
Fog computing
Round-robin
Latency reduction
Resource optimization

© 2024 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*The load balancing issue is an important area of
study in fog computing (Sulimani et al., 2024).
Resource allocation involves effectively mapping
tasks to fog nodes to ensure optimal use of fog
resources, aiming to minimize bandwidth usage,
service request delays, and support real-time
applications. Occasionally, fog resources within
clusters are not fully utilized. Tasks that cannot be
assigned to any available resource are sent to the
cloud, potentially leading to increased latency. To
improve the efficiency of fog node allocation, a
robust allocation method to distribute the load
among fog nodes is necessary (Ogundoyin and Kamil,
2021).

There are several load balancing algorithms that
can be applied in the system to manage the resource
allocation problem. Some of them are static, such as
the round-robin method (Ali and Alubady, 2023).

* Corresponding Author.
Email Address: ealkayyal@kau.edu.sa (E. S. Alkayal)

https://doi.org/10.21833/ijaas.2024.10.022
 Corresponding author's ORCID profile:

https://orcid.org/0000-0002-6617-1051
2313-626X/© 2024 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Other methods, such as the adaptive approach
(Wang and Lu, 2022), are dynamic. It is essential to
apply balancing algorithms that utilize the fog
resources to the maximum level to decrease the
number of jobs forwarded to the cloud (Ali and
Alubady, 2023).

This paper focuses on improving the round-robin
algorithm since the traditional round-robin
algorithm, or the static round-robin (SRR) algorithm,
is the most used technique because of its simplicity.
It distributes the work between the network servers,
where the jobs are assigned to the fog nodes in a
cyclic manner before the cycle repeats. For example,
in a fog system with (n) fog servers, the SRR sends
the first job to the first node and the second job to
the second fog node. When job n arrives, the
algorithm will assign it to fog node n. The following
job (n+1) will be assigned to fog node 1, and the
algorithm restarts the order from the beginning
(Hidayat et al., 2019). At any time, if the server in
order reaches its full capacity, the next job will be
routed to the cloud regardless of the load capacity of
the other fog nodes, as shown in Fig. 1.

The greatest advantage of SRR is that it is easy to
implement. However, if the load arriving at the cloud
is different at each iteration, using SRR would not be
efficient in balancing the load (Hidayat et al., 2019).
To address SRR limitations, this paper proposes a

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ealkayyal@kau.edu.sa
https://doi.org/10.21833/ijaas.2024.10.022
https://orcid.org/0000-0002-6617-1051
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2024.10.022&domain=pdf&

Alkayal et al/International Journal of Advanced and Applied Sciences, 11(10) 2024, Pages: 196-205

197

dynamic approach involving the round-robin
balancer (DRR) algorithm to increase the overall
response time. This research questions whether
applying the proposed DRR algorithm can increase

fog resource utilization and decrease the number of
jobs rerouted to the cloud to reduce the overall
response time of the system.

Server 1

Server 2

Server 3

Load balancer

Job3

Job1

Job2

Job4

Job1

Job4

Job2

Job3

Fig. 1: Load balancing method based on the static round-robin algorithm

The main contributions of this paper are

summarized as follows:

● A novel dynamic round-robin load balancing
(DRR) algorithm is proposed to improve the
utilization of fog resources.

● A load balancing manager is developed in the
proposed DRR algorithm to effectively distribute
the load over the available fog nodes and reduce
the need to access cloud computing.

● The proposed DRR can play a key role in reducing
the response time and, therefore, reducing the cost
of using clouds. This is because the proposed DRR
method can effectively schedule jobs between fog
resources to improve the efficiency of the fog
resources and reduce dependency on the cloud.

The remaining sections of the paper are

organized as follows. Section 2 reviews the previous
load balancing methods used in fog resources and
background information about cloud computing, fog
computing, and load balancing. Section 3 presents
the architecture of the proposed dynamic round-
robin load balance method. Section 4 explains the
experimental setup and discusses the results of the
proposed algorithm. Section 5 summarizes the
conclusions and offers future directions.

2. Literature review

Cloud computing refers to the use of remote
resources to save and manipulate data via the
internet. It can be divided into two components: the
platform and the applications. The cloud platform
includes cloud operating systems and hardware or

virtual servers that provide services to several types
of cloud applications. The platform distributes the
work from the cloud applications among the servers
dynamically. On the other hand, cloud applications
include applications hosted by cloud servers and are
available to any user who has access to the cloud.

Cloud computing includes several computer
resources that accept different workloads. With the
support of the cloud’s virtual and physical nodes,
this workload is quickly deployed and scaled out
within the cloud. The infrastructure of the cloud
increases the efficient usage of hardware and
software resources. This can be achieved by
grouping the system entities into one regardless of
the location of each entity. Overall, cloud computing
is a real-time, load balancing, virtualized system that
reduces management complexity and increases
system responsiveness (Afzal and Kavitha, 2019;
Prakash et al., 2017).

One of the advantages of cloud computing is
resource scalability, where the users can add or
remove resources to their cloud based on their
needs. Another benefit is that using cloud resources
helps the user decrease the cost needed for upfront
infrastructure investments. In addition, the users can
rely on the availability of cloud resources such as
data centers since the services provided by the cloud
are always redundant and packed up, which
increases the cloud's reliability and availability.
Moreover, an important advantage of cloud
computing is the user's ability to access the cloud
system remotely and at any time, allowing the users
of the cloud to collaborate and share resources
between them (Ameen and Begum, 2022; Prakash et
al., 2017).

Alkayal et al/International Journal of Advanced and Applied Sciences, 11(10) 2024, Pages: 196-205

198

On the other hand, cloud computing has several
disadvantages, including the need for internet
connectivity to access the cloud. Additionally,
sharing resources between several users may
threaten the security and privacy of the data if the
service provider does not provide a good security
system on the cloud. Another disadvantage is that
the cloud infrastructure is under the control of the
service provider, which decreases the degree to
which the user controls his or her resources.
Another major problem facing the cloud is its
performance and response time. As the cloud
infrastructure and the number of users who execute
the cloud resources increase, the cloud may take
longer to serve its users. This results in decreased
cloud performance and an increased time needed to
finish jobs from the users (Ameen and Begum, 2022;
Prakash et al., 2017).

The cloud infrastructure increases the cost since
the users need to execute their jobs directly on the
cloud without benefiting from their local resources if
needed. One of the challenges faced in cloud
computing is that the central server is responsible
for processing the data in cloud computing. This
consumes time when the data must be moved from
one node to another until it reaches the central
server and then moves back to the sending node
(Ameen and Begum, 2022; Prakash et al., 2017).
Therefore, fog computing was introduced to address
the limitations of cloud computing, as discussed in
the next section.

Fog computing is an extended paradigm of the
cloud infrastructure. Fog resources are distributed
among the network and assigned at its edge closer to
the users. They allow the users to run their jobs
using the closest resource instead of migrating the
jobs to the cloud. This will decrease the time needed
to process the data and increase the overall cloud
performance (Harish et al., 2019). Fig. 2 illustrates
the layers of fog computing and the relationship
between them and the cloud computing
infrastructure.

Fog computing expands the computing in the
cloud to the network edge. The jobs are processed
inside the node if no higher computing service is
required because the fog infrastructure is limited.
Furthermore, tasks can be executed partially
between the node and the central server if needed.
This reduces the amount of time needed to transfer
the task from/to a node to the central server.
Typically, fog computing is useful for real-time
applications since it helps reduce the latency time
and improves the response time (Harish et al., 2019).

Even though fog computing is an extension of
cloud computing, some issues must be addressed in
fog computing. When enormous numbers of jobs
come from its users, the fog must control which fog
resource to assign to each user. Assigning the users’
jobs to the fog resources must be balanced;
therefore, fog computing needs a good load
balancing algorithm to ensure that the performance
of fog computing for every node in the system is
effectively balanced. The fog must be able to

efficiently balance the workload and schedule the
resources to take advantage of the fog computing
benefits. These benefits include decreasing the
latency time and the cost of using resources and
increasing the reliability of the overall cloud system
(Hidayat et al., 2019).

Cloud Computing

Fog Computing

Edge Devices

Fig. 2: Fog computing architecture

Load balancing algorithms can be static or

dynamic. Dynamic load balancing algorithms
distribute the tasks while considering the current
load of each server in the cloud, whereas static load
balancing algorithms do not take similar
considerations when distributing the incoming tasks.
The load balancer can be chosen based on the system
needs. If the system is homogeneous or
heterogeneous, applying the dynamic approach will
be more suitable. However, using the dynamic
approach increases the system overhead. If the
degree of overhead is significant to the system, the
use of static approaches would be more suitable than
the use of dynamic approaches (Afzal and Kavitha,
2019).

The round-robin algorithm in the load balancing
technique is a classic algorithm that has been widely
used because of its simplicity. The round-robin
algorithm has an essential role in distributing the
client requests among the cloud servers one at a time
following an ordered list starting from the beginning
of the list (Wang et al., 2016). Once a request is
assigned to the last server in the list, the process of
setting client requests starts again from the first
node. The main advantage of the round-robin
algorithm is that it is easier to implement than other
load balancing algorithms. However, when there are
different loading requests to be distributed into the
server, the loads cannot be balanced effectively
(Ghosh and Banerjee, 2018). The algorithm is based
on the priority of the different processing times by
measuring the time parameter. Different time
parameters are associated with the round-robin
algorithm, such as the burst time and time
quantization (Xu et al., 2016). The burst time is the
time required to finish executing a service request,
whereas the time quantum is the time assigned to a
service so that it can access a virtual machine.

Researchers have identified a set of
disadvantages with respect to the static round-robin
algorithm (Choudhary and Kothari, 2018). Some of
these disadvantages are the increase in the system
waiting time, response time, and context switch
number, as well as the decrease in the system

Alkayal et al/International Journal of Advanced and Applied Sciences, 11(10) 2024, Pages: 196-205

199

throughput in some stances. In addition, one of the
major flows of the traditional round-robin algorithm
is the nature of the quantum of time.

There are many popular load balancing
algorithms that can be applied to improve cloud
computing performance (Shafiq et al., 2022). These
algorithms can be classified into three types
according to the operation environment on which
they depend; hence, they can be static, dynamic, and
nature-inspired algorithms. The process of load
balancing algorithms in a static environment
depends on previous knowledge of the capabilities,
features, and state of the system. For example, the
system information includes the memory, storage
capacity, and processing needed to specify the load
of the system. On the other hand, a dynamic change
in the load during runtime has not been considered
in the static load balancing algorithms. Thus, a major
drawback of the static algorithm is its intolerance to
sudden changes in load (Mishra et al., 2020).

The dynamic algorithms used for load balancing
are more efficient and adaptable than the static
algorithms. Unlike static algorithms, dynamic
algorithms are more flexible for distributed cloud
systems since they do not require any prior
knowledge (Shafiq et al., 2022). Haryani and Jagli
(2014) and Sharma et al. (2022) reported that,
compared with static algorithms, dynamic
algorithms have greater runtime complexity and
eliminate the overhead from the previous state
storage of the system.

Recently, job scheduling in a cloud computing
environment has been discussed as a critical
research issue. Accordingly, the system's
performance needs an efficient task-scheduling
algorithm to increase the network capacity and
reduce the response time. Moreover, many load
balancing algorithms that enhance cloud application
performance have been introduced by Ameen and
Begum (2022), who presented a new Median-
Average round-robin (MARR) scheduling algorithm,
and they confirmed that when the time quantum has
been adjusted dynamically, it performs better than
the static round-robin. With the proposed algorithm,
the average turnaround (ATT) and waiting time
(AWT) achieved the best results on all the
performance metrics; nevertheless, the number of
context switches increased with the algorithm.

Furthermore, divisible weighted and dynamic
load balancing approaches have been used in other
studies, such as Sharma et al. (2022), due to their
effectiveness in reducing response times and
achieving load balancing without causing delays.
Devi and Uthariaraj (2016) introduced a model that
allocates incoming tasks within a virtual machine
(VM) environment, incorporating scheduling, load
balancing, resource monitoring, and task
management algorithms. In this model, the scheduler
assigns incoming tasks to the VM with the fewest
jobs at the time of arrival. The load balancing
algorithm then redistributes tasks among available
VMs to maintain an even workload distribution. This
paper proposed an improved weighted round-robin

algorithm, called IWRR, as a load balancing method.
The effectiveness of IWRR was assessed using
metrics such as response time, the number of
migrated tasks, cumulative idle time for all tasks, and
the total number of delayed tasks. IWRR was
compared to RR and WRR algorithms across various
job lengths, demonstrating superior performance in
terms of response time, a key quality of service (QoS)
metric.

Noman and Jasim (2021) analyzed the
performance of static and dynamic load balancing,
emphasizing network throughput. They examined
static techniques, including random and weighted
methods, finding minimal changes with round-robin
and weighted methods. However, compared to the
random technique, the weighted round-robin
method achieved a 6% improvement. In dynamic
load balancing, comparing the least connection-
based and least bandwidth-based techniques
showed less than a 1% difference in average
network throughput. Overall, the dynamic methods
outperformed static ones. When compared to static
round-robin, weighted round-robin, and random
methods, connection-based techniques improved
throughput by up to 2.2%, 2%, and 7%, respectively.
Similarly, the least bandwidth-based methods
achieved throughput improvements of up to 3.3%,
2.5%, and 8% over these static methods.

In a study by Waghmode and Patil (2023),
dynamic load balancing in cloud computing was
presented with a focus on enhancing network
performance. The weighted round-robin algorithm is
used to achieve load balancing and to allocate jobs
effectively to maximize processing speed. Pakhrudin
et al. (2023) focused on enhancing cloud service
analysis via the round-robin algorithm for task
placement for Internet of Things (IoT) services. The
round-robin technique is optimized by adjusting the
parameter values to provide high accuracy and low
cost. The results demonstrated improvements in
response times and cost efficiencies for virtual
machines.

The aim of the experiments conducted by Sinha
and Sinha (2020) was to improve the weighted
round-robin (WRR) load balancing algorithm to
increase the efficiency and effectiveness of resource
utilization in cloud computing. Both static and
dynamic load balancing algorithms have been
utilized to allocate VMs based on their processing
capacity and to dynamically adjust the load on each
VM at runtime. This approach involves considering
the capacity of each VM to determine the optimal
allocation of jobs to the appropriate virtual
machines. Researchers have concentrated on
optimizing the performance of virtual machines by
selecting an algorithm that prioritizes job duration,
resource capacity, and the interdependency of
multiple tasks. The enhanced WRR load balancing
algorithm overcomes the drawback of the RR load
balancing algorithm, which fails to consider the
number of user requests when assigning the
appropriate virtual machine to incoming requests.
Instead, it simply makes decisions based on rotation.

Alkayal et al/International Journal of Advanced and Applied Sciences, 11(10) 2024, Pages: 196-205

200

Garcia-Carballeira et al. (2021) implemented the
shortest queue algorithm based on randomization
techniques, and static local balancing was
implemented based on a round-robin policy. The
results of this new version demonstrated an
enhanced performance compared with the
traditional solution across all scenarios, even in
systems operating at 99% capacity. A key benefit of
this approach is the reduced likelihood of selecting a
server that was recently chosen. Furthermore,
simulations were conducted to validate the
theoretical approximation proposed in the study.
These simulations revealed that the probability of
selecting an empty server is 60% higher for high
service rates.

These works provide good results in balancing
loads in cloud computing paradigms. This paper
focuses on disturbing the load among fog resources
and reducing the need to use cloud computing
resources, especially for real-time applications that
need lower response times with shorter latencies.

3. The proposed dynamic round-robin load
balanced algorithm

In fog computing, each cluster contains fog
resources that handle computational requests from
edge devices within the cluster. If a fog resource has
sufficient capacity, it processes tasks locally within
the fog nodes. Otherwise, tasks are forwarded to
cloud computing. At times, fog resources may remain
idle if there are no computational requests from
edge devices during specific time slots. To address
this issue, the proposed algorithm aims to balance
the load among fog resources and minimize the
number of tasks sent to the cloud, thereby reducing
processing time. The architecture of the proposed
system consists of four layers, as illustrated in Fig. 3.

● Edge device layer: This layer includes N users

connected to the fog resource (FR) in a cluster;
these users send jobs to the FR for processing at
each slot of time.

● Fog resource (FR): In this layer, there are M
clusters in the setup, and each cluster has FR. If FR
receives jobs from connected users (N), it
processes the request based on several criteria. If
the load at the FR exceeds its capacity, then it
sends jobs to the load balancer manager to
schedule with the nearby FR or cloud server.

● Load balancer manager (LBM): In this layer, the
LBM has a list of FRs and obtains the status details
of the FR at every slot. Its main goal is to pass jobs
from FRs that have more work to those with less
workload. In the worst case, if the LBM cannot find
any FR that has a lower load, the LBM will pass
those jobs to the cloud server, which has unlimited
resources. Then, the cloud server performs the
remaining task within that slot. There will be M
FRs managed by the LBM; by trying to find a
suitable FR to avoid an unbalanced job distribution
before the jobs are sent to the cloud, the LBM will
manage to increase the FR utilization, decrease the

cloud utilization, and improve the completion time
of the jobs.

● Cloud resources: In this layer, the cloud servers
have unlimited resources to process the jobs.

Cloud Centers

Load Balancer Manager

Fog Resource # 1

ED1

ED2

Fog Resource # 2

ED3

Fog Resource # n

ED4

Fig. 3: Architecture of the proposed DRR load balancer

The proposed dynamic round-robin load

balancing algorithm includes the following steps:

1. Edge devices submit tasks to the cluster heads of
the fog resources.

2. Jobs sent by the edge devices to the fog resources
are accepted by the fog resources.

3. If the number of jobs exceeds the capacity of the
fog resource, then excess jobs are sent to the load
balancer manager to schedule them to other fog
clusters.

4. If the number of jobs submitted is less than the
capacity of the fog resource, then the fog resource
informs the load balancer manager about its extra
capacity to receive jobs from other clusters that
have more jobs.

5. The manager balances the load on the fog
resources at all the clusters, while any jobs left out
are sent to the cloud for execution.

6. At the end of each slot, no job is left without
completion.

The DRR algorithm steps are shown in Algorithm

1, which is based on the dynamic job distribution
method in a fog computing environment and is
designed to optimize the utilization of resources
across fog clusters. Initially, it sets up the necessary
data structures: S for tracking the simulation slot
number, JOB_LIST, and DIFFER_JOB_LIST for holding
jobs, and CLUSTER_LIST for listing available cluster
fog resources. The algorithm operates within a loop,
constrained by a maximum simulation time
(MAX_SIM_TIME). In each simulation slot, JOB_LIST
is populated with jobs submitted by edge devices.
Each job in JOB_LIST is then processed. If the
designated cluster fog (ClusterFog) has the capacity,
the job is executed immediately. Jobs that cannot be
processed due to capacity constraints are moved to
DIFFER_JOB_LIST for subsequent handling.

In processing deferred jobs from
DIFFER_JOB_LIST, the algorithm checks each cluster
in CLUSTER_LIST for available capacity. If a cluster

Alkayal et al/International Journal of Advanced and Applied Sciences, 11(10) 2024, Pages: 196-205

201

can take on a job, it is assigned and removed from
the deferred list. This process continues until either
a cluster is found for each deferred job or no suitable
cluster is available. In the latter case, the job is sent
to the cloud for processing (send_job_toCloud). After
all the jobs are processed, the lists are reset, and the
simulation moves to the next slot (S ->S+1). This
loop of job assignment, execution, and reassignment
(if needed) continues until the simulation reaches its
time limit. The algorithm efficiently manages the fog
computing resource allocations, dynamically adjusts
to varying workloads, and ensures the optimal use of
the fog and cloud resources.

Algorithm 1: Algorithm of the proposed DRR
1 S = 1
2 initialize JOB_LIST and DIFFER_JOB_LIST to empty job list
3 initialize CLUSTER_LIST with list of clusters_fog_resources
4 while Time(S) < MAX_SIM_TIME

5
JOB_LIST ->list of jobs, submitted by edge devices
//received and added to JOB_LIST, at slot S

6 for each JOB in LIST
7 if ClusterFog (JOB) has capacity to process
8 ClusterFog (JOB) execute the task/job
9 Else
10 JOB needs co-ordination and added to DIFFER_JOB_LIST.
11 for_end

12
for each JOB in DIFFER_JOB_LIST //deferred jobs for
loop

13 Boolean NO_CLUSTER_FREE = true
14 for ClusterFog in CLUSTER_LIST //cluster for_loop
15 if ClusterFog has capacity // has idle time
16 ClusterFog (JOB) execute JOB
17 set NO_CLUSTER_FREE = false
18 break (exit cluster for_loop)
19 for_end
20 if (true = NO_CLUSTER_FREE) send_job_toCloud (JOB)
21 for_end
22 initialize JOB_LIST and DIFFER_JOB_LIST to empty
23 S->S+1 // set next slot no
24 end_repeat

4. Experimental implementation and evaluation

4.1. Simulation setup

To implement and evaluate the proposed load
balancing algorithm in fog computing, a simulation-
controlled and flexible environment was developed
in the Java language. The components of the fog and
cloud computing elements, such as the edge devices,
fog nodes, and cloud servers, were simulated. The
algorithm was then programmed by defining the
logic for task submission, job acceptance, capacity
management, manager intervention for load
balancing, and cloud computing resources. The
proposed work was then configured, and the
parameters for evaluation, such as the number of
edge devices, the capacity of the fog resources, the
network latency, and the processing power, were set.
These parameters should reflect realistic scenarios
for accurate testing.

4.2. Evaluation metrics

Once the environment and algorithm are
implemented, performance metrics such as task
completion time, resource utilization efficiency, and

load distribution are evaluated. To demonstrate the
effectiveness of the proposed algorithm,
performance comparisons were conducted with and
without its application. The following steps were
used to assess the proposed algorithm:

● A simulated environment with edge devices, fog

resources (clusters), a manager, and a cloud is set
up. This involves deploying and configuring the
necessary hardware and software components.

● Generate a set of test tasks or jobs that represent
different workloads. These tasks should vary in
size and complexity to simulate real-world
scenarios.

● Implement the algorithm steps in your system's
codebase based on the description provided. It is
important to ensure that the code accurately
represents the logic and flow of the algorithm.

● Test cases that cover different scenarios and edge
cases are created.

● Execute the test cases by running the algorithm
implementation on the test environment. Then, the
results, including job assignments, load balancing
decisions, and job completions, are monitored and
recorded.

● The test results are analyzed and compared
against the expected outcomes. The algorithm
behaves as intended and meets the desired
objectives, such as load balancing, efficient
resource utilization, and job completion within
time slots.

In this work, three metrics, namely, the average

completion time of the job, the fog resource CPU
utilization of the fog resource, and the cloud
utilization, are used to evaluate the performance of
the proposed algorithm. These metrics are described
as follows.

Fog resource utilization (FRU): In the proposed
work, only the CPU utilization, which is based on
computational tasks, is used. Therefore, the CPU
utilization is computed via Eq. 1.

𝐹𝑅𝑈 (𝑓𝑠) =
𝑈𝑠𝑒𝑑𝐶(𝑓𝑠)

𝑇𝑜𝑡𝑎𝑙𝐶(𝑓𝑠)
∗ 100 (1)

where, 𝑈𝑠𝑒𝑑𝐶 is the used CPU for all tasks executed
in server fs, and 𝑇𝑜𝑡𝑎𝑙𝐶(𝑓𝑠) is the total CPU of fog fs.

Cloud utilization (CU): This paper focuses on the
cloud utilization of computing resources. Therefore,
the cloud utilization is computed via Eq. 2.

𝐶𝑈 (𝑓𝑠) =
𝑈𝑠𝑒𝑑𝐶(𝑓𝑠)

𝑇𝑜𝑡𝑎𝑙𝐶(𝑓𝑠)
∗ 100 (2)

where, 𝑈𝑠𝑒𝑑𝐶 is the used CPU for all the tasks
executed in server fs, and 𝑇𝑜𝑡𝑎𝑙𝐶(𝑓𝑠) is the total CPU
of fog fs.

Average completed time (ACT): The average

completed time of a job is measured by computing
the difference between the time of submitting the job

Alkayal et al/International Journal of Advanced and Applied Sciences, 11(10) 2024, Pages: 196-205

202

to the system and the time of finishing the execution
of the job, as shown in Eq. 3.

𝐴𝐶𝑇 (𝑓𝑠) = 𝐹𝑖𝑛𝐸𝑥𝑐𝑡(𝑡) − 𝑆𝑢𝑏𝑡(𝑡) (3)

where, 𝐹𝑖𝑛𝐸𝑥𝑐𝑇(𝑡) denotes the finish time of the
execution of job t, and 𝑆𝑢𝑏𝑇(𝑡) denotes the
submission time of job t.

4.3. Performance results of the proposed method

To assess the proposed algorithm, experiments
were conducted using 3, 4, and 5 clusters with

varying numbers of edge devices to measure its
effectiveness. The results are presented in Tables 1
and 2.

Table 1 displays the average completion time for
assigned tasks, both with and without applying the
DDR algorithm, across different scenarios. The
findings indicate an improvement in completion time
when using the DDR algorithm. Table 2 presents the
CPU utilization results for 3, 4, and 5 clusters,
comparing scenarios with and without DDR. The
results demonstrate an increase in CPU utilization
when the DDR algorithm is applied.

Table 1: The average time of completed tasks (seconds)

Clusters Applying DRR Edge devices Number-of-tasks Average time
3 Yes 15 2456 7.8257
3 No 15 2503 9.1014
4 Yes 22 3621 8.2239
4 No 22 3603 9.7643
5 Yes 30 5007 8.7926
5 No 30 4947 10.7558

Table 2: CPU utilization results with DRR and without DRR in 3, 4, and 5 clusters

Clusters Applying DRR CPU utilization 3 clusters CPU utilization 4 clusters CPU utilization 5 clusters
FR1 True 75.24 85.1297 95.9081
FR1 False 63.473 62.275 63.772
FR2 True 79.341 83.5329 90.01
FR2 False 74.351 75.648 73.253
FR3 True 84.1317 86.3273 92.415
FR3 False 85.7285 82.834 82.135
FR4 - - 91.2175 92.415
FR4 - - 89.121 89.021
FR5 - - - 95.409
FR5 - - - 92.814

The CPU utilization comparison in different
cluster configurations, referred to as "cluster FRs,"
with varying numbers of edge devices is shown in
Fig. 4. It compares scenarios with and without the
proposed load balancing manager. Unlike Tables 1
and 2, which showed that the load balancing
manager reduces resource utilization or task
completion times, this chart indicates that CPU
utilization is greater with the proposed load
balancing manager across all the cluster
configurations. This means that the proposed load
balancing manager can distribute tasks in a way that
utilizes CPU resources more completely, which could
be an indication of improved efficiency or a more
evenly distributed workload among the available
CPUs. However, the increase in utilization is not
drastic, indicating a balanced approach to load
management.

Table 3 shows the results of the comparison of
cloud utilization in scenarios with and without
applying the proposed load balancing manager
across different numbers of clusters. As shown in
Fig. 5, the proposed load balancing manager
effectively reduces cloud utilization across all the
cluster configurations. The trend suggests that, as
the number of clusters and edge devices increases,
the cloud utilization also increases when there is no
load balancing manager. However, the presence of
the proposed load balancing manager consistently
lowers the utilization, indicating a more efficient

distribution of computing tasks across the fog nodes,
preventing an overreliance on the cloud.

Fig. 4: Comparison of the CPU utilization results before

and after applying the proposed DRR

Table 3: Cloud utilization with DRR and without DRR with

2, 3, or 4 clusters
Clusters Applying DRR Cloud computing

FR3 T 6.3999
FR3 F 26.3
FR4 T 15.19
FR4 F 49.8
FR5 T 33.6
FR5 F 92.89

Fig. 6 compares the average time in seconds to

complete the tasks in a computing environment with
different numbers of clusters and edge devices,
specifically, the effect of using the proposed load
balancing manager. The chart shows that in all the

65.92

78.10 82.33
91.0489.55

84.07
88.55 92.78

C-FR1(4EDs) C-FR2(5EDs) C-FR3(6EDs) C-FR4(7EDs)

C
P

U
 U

ti
li

za
ti

o
n

(%
)

Cluster FRs

without load balancing with load balancing

Alkayal et al/International Journal of Advanced and Applied Sciences, 11(10) 2024, Pages: 196-205

203

cluster configurations, the presence of the proposed
load balancing manager reduces the average time
required to complete the tasks. This indicates that
the proposed load balancing manager contributes to
increasing efficiency and reducing the completion
time of the tasks as the number of clusters and edge
devices increases. The trend shows that the time
savings are more significant as the system scales up,
highlighting the effectiveness of load balancing in
larger and more complex environments.

Fig. 5: Comparison of the cloud utilization results before

and after applying the proposed DRR

Fig. 6: Comparison of the average time in seconds after

applying the proposed DRR

4.4. Discussion of results

The analysis of CPU utilization, cloud utilization,
and average task completion times across different
cluster configurations, with and without the
proposed load balancing manager, provides valuable
insights into the effectiveness and impact of the DRR
load balancing approach.

The comparison of CPU utilization across various
cluster configurations demonstrates improved
efficiency and a more balanced workload
distribution among available CPUs when using the
load balancing manager. Regarding cloud utilization,
the analysis shows that the DRR load balancing
manager effectively reduces cloud usage in all
cluster configurations. The trend indicates that
without a load balancing manager, cloud utilization
increases as the number of clusters and edge devices
grows. In contrast, the presence of a load balancing
manager consistently lowers cloud usage by

distributing computing tasks more efficiently across
fog nodes, thus reducing dependency on the cloud.

The analysis of average task completion times
further highlights the benefits of load balancing. In
all configurations, the load balancing manager
decreases the average time needed to complete
tasks. This indicates that load balancing enhances
overall system efficiency, particularly in larger and
more complex environments where time savings are
more pronounced.

This model has several advantages and some
limitations. Most of the advantages are described as
follows:

● Improving CPU utilization: By ensuring an

effective distribution of the incoming work along
the available CPU resources, this algorithm
manages optimal utilization of the available CPU
resources, which reduces the possibility of having
some overloaded CPUs and other idle resources at
the same time. Similarly, (Devi and Uthariaraj,
2016) highlighted the importance of applying the
IWRR-optimized scheduling algorithm to improve
the efficiency and utilization of fog and cloud
resources.

● By reducing cloud utilization by approximately
70%, the algorithm first ensures that any incoming
job will be assigned to the fog resources. For any
reason, if the next candidate's fog resource is
overloaded, the algorithm first searches within the
other fog resources for any available resource to
assign the job to instead of assigning the job to the
cloud. This reduces the number of jobs sent to the
cloud and minimizes cloud utilization. This finding
is consistent with the results of Noman and Jasim
(2021), who reported that the overall performance
of dynamic and static techniques was better than
that of static techniques. The DDR results are also
consistent with the findings of Sinha and Sinha
(2020) and Garcia-Carballeira et al. (2021), which
show an enhancement of the improved round-
robin techniques in terms of the efficiency and
effectiveness of resource utilization in cloud
computing.

● By increasing the average time of completing the
tasks by approximately 15% for any incoming job,
the algorithm ensures assigning the job to the fog
resources that are available instead of assigning it
to the next inline resource, regardless of whether
this resource is overloaded or not.

In summary, the results of applying DDR in a fog

environment support the advantages of improving
the load balancing and scheduling techniques, which
constitute the core of the DDR algorithm. The
proposed load balancing algorithm plays a crucial
role in optimizing fog resource utilization, improving
efficiency, and reducing completion times in
distributed computing environments. Compared
with the traditional SRR algorithm, one of the
limitations is that the new approach may suffer from
an additional overhead needed by the load balancing
manager to add extra computations to decide which

26.30

49.80

92.90

6.39

15.19

33.60

3-Clusters(15 EDs) 4-Clusters(22 EDs) 5-Clusters(30 EDs)

C
lo

u
d

 U
ti

li
za

ti
o

n
 (

s)

Number of Clusters

without load balancing with load balancing

9.1014
9.7643

10.7558

7.8257 8.2239
8.7926

3 Clusters (15 EDs) 4 Clusters (22 EDs) 5 Clusters (30 EDs)

A
ve

rg
e

T
im

e
to

 c
o

m
p

le
te

 T
as

k
 (

m
s)

Number of Clusters-Edge Devices

With out load balancing With load balancing

Alkayal et al/International Journal of Advanced and Applied Sciences, 11(10) 2024, Pages: 196-205

204

resource it will assign the task to. This may also
increase the overall complexity of the algorithm
since the load manager must monitor all available
resources at every assigning cycle to ensure even
load balancing.

5. Conclusion and future work

To improve the performance of the traditional
static round-robin algorithm, this paper proposes a
dynamic load balancing approach involving the
round-robin balancer algorithm to increase the
utilization of fog resources. The proposed algorithm
develops a load balancing manager that can
effectively distribute the load over available fog
nodes to reduce the need to access cloud computing.
The simulation results demonstrated that the
proposed load balancing manager of DRR
contributed to enhancing the utilization of fog
resources in terms of CPU utilization, cloud
utilization, and the average time to complete tasks in
the different cluster configurations. By effectively
distributing tasks among available resources, load
balancing enables a more balanced workload and
prevents overreliance on the cloud, resulting in
improved performance and scalability. To further
improve the performance of the proposed algorithm,
heuristic and evolutionary algorithms can be applied
to schedule and optimize tasks/jobs across the fog
resources.

The model can be improved by applying machine
learning to help determine the initialization
parameters on the basis of the previous data, which
will improve and optimize the results.

Acknowledgment

This project was funded by the Deanship of
Scientific Research (DSR) at King Abdulaziz
University, Jeddah, under grant no. (GPIP: 528-865-
2024). The authors gratefully acknowledge the DSR
for their technical and financial support.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Afzal S and Kavitha G (2019). Load balancing in cloud computing–
A hierarchical taxonomical classification. Journal of Cloud
Computing, 8: 22.
https://doi.org/10.1186/s13677-019-0146-7

Ali S and Alubady R (2023). RWRR: Remind weighted rounding
robin for load balancing in fog computing. In the 7th
International Symposium on Innovative Approaches in Smart
Technologies, IEEE, Istanbul, Turkey: 1-7.
https://doi.org/10.1109/ISAS60782.2023.10391499

Ameen JN and Begum SJ (2022). Evolutionary algorithm based
adaptive load balancing (EA-ALB) in cloud computing

framework. Intelligent Automation and Soft Computing,
34(2): 1281-1294.
https://doi.org/10.32604/iasc.2022.025137

Choudhary R and Kothari DA (2018). A novel technique for load
balancing in cloud computing environment. International
Journal of Software and Hardware Research in Engineering,
6(6): 1-5.

Devi DC and Uthariaraj VR (2016). Load balancing in cloud
computing environment using improved weighted round
robin algorithm for nonpreemptive dependent tasks. The
Scientific World Journal, 2016: 3896065.
https://doi.org/10.1155/2016/3896065
PMid:26955656 PMCid:PMC4756214

Garcia-Carballeira F, Calderon A, and Carretero J (2021).
Enhancing the power of two choices load balancing algorithm
using round robin policy. Cluster Computing, 24(2): 611-624.
https://doi.org/10.1007/s10586-020-03139-6

Ghosh S and Banerjee C (2018). Dynamic time quantum priority
based round robin for load balancing in cloud environment. In
the 4th International Conference on Research in
Computational Intelligence and Communication Networks,
IEEE, Kolkata, India: 33-37.
https://doi.org/10.1109/ICRCICN.2018.8718694
PMCid:PMC6191404

Harish G, Nagaraju S, Harish B, and Shaik M (2019). A review on
fog computing and its applications. International Journal of
Innovative Technology and Exploring Engineering, 8(6C2):
2278-3075.

Haryani N and Jagli D (2014). Dynamic method for load balancing
in cloud computing. IOSR Journal of Computer Engineering
(IOSR-JCE), 16(4): 23-28.
https://doi.org/10.9790/0661-16442328

Hidayat T, Azzery Y, and Mahardiko R (2019). Load balancing
network by using round robin algorithm: A systematic
literature review. Jurnal Online Informatika, 4(2): 85-89.
https://doi.org/10.15575/join.v4i2.446

Mishra SK, Sahoo B, and Parida PP (2020). Load balancing in cloud
computing: A big picture. Journal of King Saud University-
Computer and Information Sciences, 32(2): 149-158.
https://doi.org/10.1016/j.jksuci.2018.01.003

Noman HM and Jasim MN (2021). A comparative performance
analysis for static and dynamic load balancing techniques in
software defined network environment. Journal of Physics:
Conference Series, 1773: 012010.
https://doi.org/10.1088/1742-6596/1773/1/012010

Ogundoyin SO and Kamil IA (2021). Optimization techniques and
applications in fog computing: An exhaustive survey. Swarm
and Evolutionary Computation, 66: 100937.
https://doi.org/10.1016/j.swevo.2021.100937

Pakhrudin NSM, Kassim M, and Idris A (2023). Cloud service
analysis using round-robin algorithm for quality-of-service
aware task placement for Internet of Things services.
International Journal of Electrical and Computer Engineering,
13(3): 3464-3473.
https://doi.org/10.11591/ijece.v13i3.pp3464-3473

Prakash P, Darshaun KG, Yaazhlene P, Ganesh MV, and Vasudha B
(2017). Fog computing: Issues, challenges and future
directions. International Journal of Electrical and Computer
Engineering, 7(6): 3669-3673.
https://doi.org/10.11591/ijece.v7i6.pp3669-3673

Shafiq DA, Jhanjhi NZ, and Abdullah A (2022). Load balancing
techniques in cloud computing environment: A review.
Journal of King Saud University-Computer and Information
Sciences, 34(7): 3910-3933.
https://doi.org/10.1016/j.jksuci.2021.02.007

Sharma C, Sharma S, Kautish S, Alsallami SA, Khalil EM, and
Mohamed AW (2022). A new median-average round robin
scheduling algorithm: An optimal approach for reducing
turnaround and waiting time. Alexandria Engineering Journal,

https://doi.org/10.1186/s13677-019-0146-7
https://doi.org/10.1109/ISAS60782.2023.10391499
https://doi.org/10.32604/iasc.2022.025137
https://doi.org/10.1155/2016/3896065
https://doi.org/10.1007/s10586-020-03139-6
https://doi.org/10.1109/ICRCICN.2018.8718694
https://doi.org/10.9790/0661-16442328
https://doi.org/10.15575/join.v4i2.446
https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/10.1088/1742-6596/1773/1/012010
https://doi.org/10.1016/j.swevo.2021.100937
https://doi.org/10.11591/ijece.v13i3.pp3464-3473
https://doi.org/10.11591/ijece.v7i6.pp3669-3673
https://doi.org/10.1016/j.jksuci.2021.02.007

Alkayal et al/International Journal of Advanced and Applied Sciences, 11(10) 2024, Pages: 196-205

205

61(12): 10527-10538.
https://doi.org/10.1016/j.aej.2022.04.006

Sinha G and Sinha D (2020). Enhanced weighted round robin
algorithm to balance the load for effective utilization of
resource in cloud environment. EAI Endorsed Transactions on
Cloud Systems, 6(18): e4.
https://doi.org/10.4108/eai.7-9-2020.166284

Sulimani H, Sulimani R, Ramezani F, Naderpour M, Huo H, Jan T,
and Prasad M (2024). HybOff: A hybrid offloading approach to
improve load balancing in fog environments. Journal of Cloud
Computing, 13: 113.
https://doi.org/10.1186/s13677-024-00663-3

Waghmode ST and Patil BM (2023). Adaptive load balancing in
cloud computing environment. International Journal of
Intelligent Systems and Applications in Engineering, 11(1s):
209-217.

Wang L and Lu G (2016). The dynamic sub-topology load
balancing algorithm for data center networks. In the
International Conference on Information Networking, IEEE,
Kota Kinabalu, Malaysia: 268-273.
https://doi.org/10.1109/ICOIN.2016.7427075

Wang X, Sun Y, and Ding D (2022). Adaptive dynamic
programming for networked control systems under
communication constraints: A survey of trends and
techniques. International Journal of Network Dynamics and
Intelligence, 1(1): 85-98.
https://doi.org/10.53941/ijndi0101008

Xu R, Chen H, Liang X, and Wang H (2016). Priority-based
constructive algorithms for scheduling agile earth observation
satellites with total priority maximization. Expert Systems
with Applications, 51: 195-206.
https://doi.org/10.1016/j.eswa.2015.12.039

https://doi.org/10.1016/j.aej.2022.04.006
https://doi.org/10.4108/eai.7-9-2020.166284
https://doi.org/10.1186/s13677-024-00663-3
https://doi.org/10.1109/ICOIN.2016.7427075
https://doi.org/10.53941/ijndi0101008
https://doi.org/10.1016/j.eswa.2015.12.039

	Improving fog resource utilization with a dynamic round-robin load balancing approach
	1. Introduction
	2. Literature review
	3. The proposed dynamic round-robin loadbalanced algorithm
	4. Experimental implementation and evaluation
	4.1. Simulation setup
	4.2. Evaluation metrics
	4.3. Performance results of the proposed method
	4.4. Discussion of results

	5. Conclusion and future work
	Acknowledgment
	Compliance with ethical standards
	Conflict of interest
	References

