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In fog computing, load balancing is an important research problem. It focuses 
on efficiently assigning tasks to fog nodes and minimizing delay in real-time 
applications. The traditional round-robin algorithm assigns tasks in a 
rotating manner among fog nodes, but it can send tasks to the cloud too 
early, leading to increased delays. To solve this problem, this paper 
introduces an improved round-robin algorithm that takes a dynamic 
approach to balancing the use of fog resources. The new model aims to 
improve load balancing in fog computing by distributing tasks more evenly 
among fog nodes, reducing dependence on cloud computing, and making 
better use of fog resources. The improved algorithm helps fog computing 
systems run more efficiently, reduces delays in real-time applications, and 
lowers the costs associated with cloud use. The results show that the 
proposed load balancing algorithm is key to optimizing fog resource use, 
improving system efficiency, and reducing task completion times in 
distributed computing systems. 
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1. Introduction 

*The load balancing issue is an important area of 
study in fog computing (Sulimani et al., 2024). 
Resource allocation involves effectively mapping 
tasks to fog nodes to ensure optimal use of fog 
resources, aiming to minimize bandwidth usage, 
service request delays, and support real-time 
applications. Occasionally, fog resources within 
clusters are not fully utilized. Tasks that cannot be 
assigned to any available resource are sent to the 
cloud, potentially leading to increased latency. To 
improve the efficiency of fog node allocation, a 
robust allocation method to distribute the load 
among fog nodes is necessary (Ogundoyin and Kamil, 
2021). 

There are several load balancing algorithms that 
can be applied in the system to manage the resource 
allocation problem. Some of them are static, such as 
the round-robin method (Ali and Alubady, 2023). 
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Other methods, such as the adaptive approach 
(Wang and Lu, 2022), are dynamic. It is essential to 
apply balancing algorithms that utilize the fog 
resources to the maximum level to decrease the 
number of jobs forwarded to the cloud (Ali and 
Alubady, 2023). 

This paper focuses on improving the round-robin 
algorithm since the traditional round-robin 
algorithm, or the static round-robin (SRR) algorithm, 
is the most used technique because of its simplicity. 
It distributes the work between the network servers, 
where the jobs are assigned to the fog nodes in a 
cyclic manner before the cycle repeats. For example, 
in a fog system with (n) fog servers, the SRR sends 
the first job to the first node and the second job to 
the second fog node. When job n arrives, the 
algorithm will assign it to fog node n. The following 
job (n+1) will be assigned to fog node 1, and the 
algorithm restarts the order from the beginning 
(Hidayat et al., 2019). At any time, if the server in 
order reaches its full capacity, the next job will be 
routed to the cloud regardless of the load capacity of 
the other fog nodes, as shown in Fig. 1. 

The greatest advantage of SRR is that it is easy to 
implement. However, if the load arriving at the cloud 
is different at each iteration, using SRR would not be 
efficient in balancing the load (Hidayat et al., 2019). 
To address SRR limitations, this paper proposes a 
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dynamic approach involving the round-robin 
balancer (DRR) algorithm to increase the overall 
response time. This research questions whether 
applying the proposed DRR algorithm can increase 

fog resource utilization and decrease the number of 
jobs rerouted to the cloud to reduce the overall 
response time of the system. 
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Fig. 1: Load balancing method based on the static round-robin algorithm 

 
The main contributions of this paper are 

summarized as follows: 
 

● A novel dynamic round-robin load balancing 
(DRR) algorithm is proposed to improve the 
utilization of fog resources. 

● A load balancing manager is developed in the 
proposed DRR algorithm to effectively distribute 
the load over the available fog nodes and reduce 
the need to access cloud computing. 

● The proposed DRR can play a key role in reducing 
the response time and, therefore, reducing the cost 
of using clouds. This is because the proposed DRR 
method can effectively schedule jobs between fog 
resources to improve the efficiency of the fog 
resources and reduce dependency on the cloud. 

 
The remaining sections of the paper are 

organized as follows. Section 2 reviews the previous 
load balancing methods used in fog resources and 
background information about cloud computing, fog 
computing, and load balancing. Section 3 presents 
the architecture of the proposed dynamic round-
robin load balance method. Section 4 explains the 
experimental setup and discusses the results of the 
proposed algorithm. Section 5 summarizes the 
conclusions and offers future directions. 

2. Literature review 

Cloud computing refers to the use of remote 
resources to save and manipulate data via the 
internet. It can be divided into two components: the 
platform and the applications. The cloud platform 
includes cloud operating systems and hardware or 

virtual servers that provide services to several types 
of cloud applications. The platform distributes the 
work from the cloud applications among the servers 
dynamically. On the other hand, cloud applications 
include applications hosted by cloud servers and are 
available to any user who has access to the cloud. 

Cloud computing includes several computer 
resources that accept different workloads. With the 
support of the cloud’s virtual and physical nodes, 
this workload is quickly deployed and scaled out 
within the cloud. The infrastructure of the cloud 
increases the efficient usage of hardware and 
software resources. This can be achieved by 
grouping the system entities into one regardless of 
the location of each entity. Overall, cloud computing 
is a real-time, load balancing, virtualized system that 
reduces management complexity and increases 
system responsiveness (Afzal and Kavitha, 2019; 
Prakash et al., 2017). 

One of the advantages of cloud computing is 
resource scalability, where the users can add or 
remove resources to their cloud based on their 
needs. Another benefit is that using cloud resources 
helps the user decrease the cost needed for upfront 
infrastructure investments. In addition, the users can 
rely on the availability of cloud resources such as 
data centers since the services provided by the cloud 
are always redundant and packed up, which 
increases the cloud's reliability and availability. 
Moreover, an important advantage of cloud 
computing is the user's ability to access the cloud 
system remotely and at any time, allowing the users 
of the cloud to collaborate and share resources 
between them (Ameen and Begum, 2022; Prakash et 
al., 2017). 
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On the other hand, cloud computing has several 
disadvantages, including the need for internet 
connectivity to access the cloud. Additionally, 
sharing resources between several users may 
threaten the security and privacy of the data if the 
service provider does not provide a good security 
system on the cloud. Another disadvantage is that 
the cloud infrastructure is under the control of the 
service provider, which decreases the degree to 
which the user controls his or her resources. 
Another major problem facing the cloud is its 
performance and response time. As the cloud 
infrastructure and the number of users who execute 
the cloud resources increase, the cloud may take 
longer to serve its users. This results in decreased 
cloud performance and an increased time needed to 
finish jobs from the users (Ameen and Begum, 2022; 
Prakash et al., 2017). 

The cloud infrastructure increases the cost since 
the users need to execute their jobs directly on the 
cloud without benefiting from their local resources if 
needed. One of the challenges faced in cloud 
computing is that the central server is responsible 
for processing the data in cloud computing. This 
consumes time when the data must be moved from 
one node to another until it reaches the central 
server and then moves back to the sending node 
(Ameen and Begum, 2022; Prakash et al., 2017). 
Therefore, fog computing was introduced to address 
the limitations of cloud computing, as discussed in 
the next section. 

Fog computing is an extended paradigm of the 
cloud infrastructure. Fog resources are distributed 
among the network and assigned at its edge closer to 
the users. They allow the users to run their jobs 
using the closest resource instead of migrating the 
jobs to the cloud. This will decrease the time needed 
to process the data and increase the overall cloud 
performance (Harish et al., 2019). Fig. 2 illustrates 
the layers of fog computing and the relationship 
between them and the cloud computing 
infrastructure. 

Fog computing expands the computing in the 
cloud to the network edge. The jobs are processed 
inside the node if no higher computing service is 
required because the fog infrastructure is limited. 
Furthermore, tasks can be executed partially 
between the node and the central server if needed. 
This reduces the amount of time needed to transfer 
the task from/to a node to the central server. 
Typically, fog computing is useful for real-time 
applications since it helps reduce the latency time 
and improves the response time (Harish et al., 2019). 

Even though fog computing is an extension of 
cloud computing, some issues must be addressed in 
fog computing. When enormous numbers of jobs 
come from its users, the fog must control which fog 
resource to assign to each user. Assigning the users’ 
jobs to the fog resources must be balanced; 
therefore, fog computing needs a good load 
balancing algorithm to ensure that the performance 
of fog computing for every node in the system is 
effectively balanced. The fog must be able to 

efficiently balance the workload and schedule the 
resources to take advantage of the fog computing 
benefits. These benefits include decreasing the 
latency time and the cost of using resources and 
increasing the reliability of the overall cloud system 
(Hidayat et al., 2019). 

 

Cloud Computing 

Fog Computing 

Edge Devices
 

Fig. 2: Fog computing architecture 

 
Load balancing algorithms can be static or 

dynamic. Dynamic load balancing algorithms 
distribute the tasks while considering the current 
load of each server in the cloud, whereas static load 
balancing algorithms do not take similar 
considerations when distributing the incoming tasks. 
The load balancer can be chosen based on the system 
needs. If the system is homogeneous or 
heterogeneous, applying the dynamic approach will 
be more suitable. However, using the dynamic 
approach increases the system overhead. If the 
degree of overhead is significant to the system, the 
use of static approaches would be more suitable than 
the use of dynamic approaches (Afzal and Kavitha, 
2019). 

The round-robin algorithm in the load balancing 
technique is a classic algorithm that has been widely 
used because of its simplicity. The round-robin 
algorithm has an essential role in distributing the 
client requests among the cloud servers one at a time 
following an ordered list starting from the beginning 
of the list (Wang et al., 2016). Once a request is 
assigned to the last server in the list, the process of 
setting client requests starts again from the first 
node. The main advantage of the round-robin 
algorithm is that it is easier to implement than other 
load balancing algorithms. However, when there are 
different loading requests to be distributed into the 
server, the loads cannot be balanced effectively 
(Ghosh and Banerjee, 2018). The algorithm is based 
on the priority of the different processing times by 
measuring the time parameter. Different time 
parameters are associated with the round-robin 
algorithm, such as the burst time and time 
quantization (Xu et al., 2016). The burst time is the 
time required to finish executing a service request, 
whereas the time quantum is the time assigned to a 
service so that it can access a virtual machine. 

Researchers have identified a set of 
disadvantages with respect to the static round-robin 
algorithm (Choudhary and Kothari, 2018). Some of 
these disadvantages are the increase in the system 
waiting time, response time, and context switch 
number, as well as the decrease in the system 
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throughput in some stances. In addition, one of the 
major flows of the traditional round-robin algorithm 
is the nature of the quantum of time. 

There are many popular load balancing 
algorithms that can be applied to improve cloud 
computing performance (Shafiq et al., 2022). These 
algorithms can be classified into three types 
according to the operation environment on which 
they depend; hence, they can be static, dynamic, and 
nature-inspired algorithms. The process of load 
balancing algorithms in a static environment 
depends on previous knowledge of the capabilities, 
features, and state of the system. For example, the 
system information includes the memory, storage 
capacity, and processing needed to specify the load 
of the system. On the other hand, a dynamic change 
in the load during runtime has not been considered 
in the static load balancing algorithms. Thus, a major 
drawback of the static algorithm is its intolerance to 
sudden changes in load (Mishra et al., 2020). 

The dynamic algorithms used for load balancing 
are more efficient and adaptable than the static 
algorithms. Unlike static algorithms, dynamic 
algorithms are more flexible for distributed cloud 
systems since they do not require any prior 
knowledge (Shafiq et al., 2022). Haryani and Jagli 
(2014) and Sharma et al. (2022) reported that, 
compared with static algorithms, dynamic 
algorithms have greater runtime complexity and 
eliminate the overhead from the previous state 
storage of the system. 

Recently, job scheduling in a cloud computing 
environment has been discussed as a critical 
research issue. Accordingly, the system's 
performance needs an efficient task-scheduling 
algorithm to increase the network capacity and 
reduce the response time. Moreover, many load 
balancing algorithms that enhance cloud application 
performance have been introduced by Ameen and 
Begum (2022), who presented a new Median-
Average round-robin (MARR) scheduling algorithm, 
and they confirmed that when the time quantum has 
been adjusted dynamically, it performs better than 
the static round-robin. With the proposed algorithm, 
the average turnaround (ATT) and waiting time 
(AWT) achieved the best results on all the 
performance metrics; nevertheless, the number of 
context switches increased with the algorithm. 

Furthermore, divisible weighted and dynamic 
load balancing approaches have been used in other 
studies, such as Sharma et al. (2022), due to their 
effectiveness in reducing response times and 
achieving load balancing without causing delays. 
Devi and Uthariaraj (2016) introduced a model that 
allocates incoming tasks within a virtual machine 
(VM) environment, incorporating scheduling, load 
balancing, resource monitoring, and task 
management algorithms. In this model, the scheduler 
assigns incoming tasks to the VM with the fewest 
jobs at the time of arrival. The load balancing 
algorithm then redistributes tasks among available 
VMs to maintain an even workload distribution. This 
paper proposed an improved weighted round-robin 

algorithm, called IWRR, as a load balancing method. 
The effectiveness of IWRR was assessed using 
metrics such as response time, the number of 
migrated tasks, cumulative idle time for all tasks, and 
the total number of delayed tasks. IWRR was 
compared to RR and WRR algorithms across various 
job lengths, demonstrating superior performance in 
terms of response time, a key quality of service (QoS) 
metric. 

Noman and Jasim (2021) analyzed the 
performance of static and dynamic load balancing, 
emphasizing network throughput. They examined 
static techniques, including random and weighted 
methods, finding minimal changes with round-robin 
and weighted methods. However, compared to the 
random technique, the weighted round-robin 
method achieved a 6% improvement. In dynamic 
load balancing, comparing the least connection-
based and least bandwidth-based techniques 
showed less than a 1% difference in average 
network throughput. Overall, the dynamic methods 
outperformed static ones. When compared to static 
round-robin, weighted round-robin, and random 
methods, connection-based techniques improved 
throughput by up to 2.2%, 2%, and 7%, respectively. 
Similarly, the least bandwidth-based methods 
achieved throughput improvements of up to 3.3%, 
2.5%, and 8% over these static methods. 

In a study by Waghmode and Patil (2023), 
dynamic load balancing in cloud computing was 
presented with a focus on enhancing network 
performance. The weighted round-robin algorithm is 
used to achieve load balancing and to allocate jobs 
effectively to maximize processing speed. Pakhrudin 
et al. (2023) focused on enhancing cloud service 
analysis via the round-robin algorithm for task 
placement for Internet of Things (IoT) services. The 
round-robin technique is optimized by adjusting the 
parameter values to provide high accuracy and low 
cost. The results demonstrated improvements in 
response times and cost efficiencies for virtual 
machines. 

The aim of the experiments conducted by Sinha 
and Sinha (2020) was to improve the weighted 
round-robin (WRR) load balancing algorithm to 
increase the efficiency and effectiveness of resource 
utilization in cloud computing. Both static and 
dynamic load balancing algorithms have been 
utilized to allocate VMs based on their processing 
capacity and to dynamically adjust the load on each 
VM at runtime. This approach involves considering 
the capacity of each VM to determine the optimal 
allocation of jobs to the appropriate virtual 
machines. Researchers have concentrated on 
optimizing the performance of virtual machines by 
selecting an algorithm that prioritizes job duration, 
resource capacity, and the interdependency of 
multiple tasks. The enhanced WRR load balancing 
algorithm overcomes the drawback of the RR load 
balancing algorithm, which fails to consider the 
number of user requests when assigning the 
appropriate virtual machine to incoming requests. 
Instead, it simply makes decisions based on rotation. 
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Garcia-Carballeira et al. (2021) implemented the 
shortest queue algorithm based on randomization 
techniques, and static local balancing was 
implemented based on a round-robin policy. The 
results of this new version demonstrated an 
enhanced performance compared with the 
traditional solution across all scenarios, even in 
systems operating at 99% capacity. A key benefit of 
this approach is the reduced likelihood of selecting a 
server that was recently chosen. Furthermore, 
simulations were conducted to validate the 
theoretical approximation proposed in the study. 
These simulations revealed that the probability of 
selecting an empty server is 60% higher for high 
service rates. 

These works provide good results in balancing 
loads in cloud computing paradigms. This paper 
focuses on disturbing the load among fog resources 
and reducing the need to use cloud computing 
resources, especially for real-time applications that 
need lower response times with shorter latencies. 

3. The proposed dynamic round-robin load 
balanced algorithm 

In fog computing, each cluster contains fog 
resources that handle computational requests from 
edge devices within the cluster. If a fog resource has 
sufficient capacity, it processes tasks locally within 
the fog nodes. Otherwise, tasks are forwarded to 
cloud computing. At times, fog resources may remain 
idle if there are no computational requests from 
edge devices during specific time slots. To address 
this issue, the proposed algorithm aims to balance 
the load among fog resources and minimize the 
number of tasks sent to the cloud, thereby reducing 
processing time. The architecture of the proposed 
system consists of four layers, as illustrated in Fig. 3. 

 
● Edge device layer: This layer includes N users 

connected to the fog resource (FR) in a cluster; 
these users send jobs to the FR for processing at 
each slot of time. 

● Fog resource (FR): In this layer, there are M 
clusters in the setup, and each cluster has FR. If FR 
receives jobs from connected users (N), it 
processes the request based on several criteria. If 
the load at the FR exceeds its capacity, then it 
sends jobs to the load balancer manager to 
schedule with the nearby FR or cloud server. 

● Load balancer manager (LBM): In this layer, the 
LBM has a list of FRs and obtains the status details 
of the FR at every slot. Its main goal is to pass jobs 
from FRs that have more work to those with less 
workload. In the worst case, if the LBM cannot find 
any FR that has a lower load, the LBM will pass 
those jobs to the cloud server, which has unlimited 
resources. Then, the cloud server performs the 
remaining task within that slot. There will be M 
FRs managed by the LBM; by trying to find a 
suitable FR to avoid an unbalanced job distribution 
before the jobs are sent to the cloud, the LBM will 
manage to increase the FR utilization, decrease the 

cloud utilization, and improve the completion time 
of the jobs. 

● Cloud resources: In this layer, the cloud servers 
have unlimited resources to process the jobs. 
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Fog Resource # 1
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Fig. 3: Architecture of the proposed DRR load balancer 

 
The proposed dynamic round-robin load 

balancing algorithm includes the following steps: 
 

1. Edge devices submit tasks to the cluster heads of 
the fog resources. 

2. Jobs sent by the edge devices to the fog resources 
are accepted by the fog resources. 

3. If the number of jobs exceeds the capacity of the 
fog resource, then excess jobs are sent to the load 
balancer manager to schedule them to other fog 
clusters. 

4. If the number of jobs submitted is less than the 
capacity of the fog resource, then the fog resource 
informs the load balancer manager about its extra 
capacity to receive jobs from other clusters that 
have more jobs. 

5. The manager balances the load on the fog 
resources at all the clusters, while any jobs left out 
are sent to the cloud for execution. 

6. At the end of each slot, no job is left without 
completion. 

 
The DRR algorithm steps are shown in Algorithm 

1, which is based on the dynamic job distribution 
method in a fog computing environment and is 
designed to optimize the utilization of resources 
across fog clusters. Initially, it sets up the necessary 
data structures: S for tracking the simulation slot 
number, JOB_LIST, and DIFFER_JOB_LIST for holding 
jobs, and CLUSTER_LIST for listing available cluster 
fog resources. The algorithm operates within a loop, 
constrained by a maximum simulation time 
(MAX_SIM_TIME). In each simulation slot, JOB_LIST 
is populated with jobs submitted by edge devices. 
Each job in JOB_LIST is then processed. If the 
designated cluster fog (ClusterFog) has the capacity, 
the job is executed immediately. Jobs that cannot be 
processed due to capacity constraints are moved to 
DIFFER_JOB_LIST for subsequent handling. 

In processing deferred jobs from 
DIFFER_JOB_LIST, the algorithm checks each cluster 
in CLUSTER_LIST for available capacity. If a cluster 
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can take on a job, it is assigned and removed from 
the deferred list. This process continues until either 
a cluster is found for each deferred job or no suitable 
cluster is available. In the latter case, the job is sent 
to the cloud for processing (send_job_toCloud). After 
all the jobs are processed, the lists are reset, and the 
simulation moves to the next slot (S ->S+1). This 
loop of job assignment, execution, and reassignment 
(if needed) continues until the simulation reaches its 
time limit. The algorithm efficiently manages the fog 
computing resource allocations, dynamically adjusts 
to varying workloads, and ensures the optimal use of 
the fog and cloud resources. 

 
Algorithm 1: Algorithm of the proposed DRR 
1 S = 1 
2 initialize   JOB_LIST and DIFFER_JOB_LIST to empty job list 
3 initialize CLUSTER_LIST with list of clusters_fog_resources 
4 while Time(S) < MAX_SIM_TIME 

5 
JOB_LIST   ->list of jobs, submitted by edge devices 
//received and added to JOB_LIST, at slot S 

6 for each JOB in LIST 
7 if ClusterFog (JOB) has capacity to process 
8 ClusterFog (JOB) execute the task/job 
9 Else 
10 JOB needs co-ordination and added to   DIFFER_JOB_LIST. 
11 for_end 

12 
for each JOB in DIFFER_JOB_LIST        //deferred jobs for 
loop 

13 Boolean NO_CLUSTER_FREE = true 
14 for ClusterFog in CLUSTER_LIST            //cluster for_loop 
15 if ClusterFog has capacity               // has idle time 
16 ClusterFog (JOB) execute JOB 
17 set NO_CLUSTER_FREE = false 
18 break (exit cluster for_loop) 
19 for_end 
20 if (true = NO_CLUSTER_FREE) send_job_toCloud (JOB) 
21 for_end 
22 initialize JOB_LIST and DIFFER_JOB_LIST to empty 
23 S->S+1 // set next slot no 
24 end_repeat 

4. Experimental implementation and evaluation 

4.1. Simulation setup 

To implement and evaluate the proposed load 
balancing algorithm in fog computing, a simulation-
controlled and flexible environment was developed 
in the Java language. The components of the fog and 
cloud computing elements, such as the edge devices, 
fog nodes, and cloud servers, were simulated. The 
algorithm was then programmed by defining the 
logic for task submission, job acceptance, capacity 
management, manager intervention for load 
balancing, and cloud computing resources. The 
proposed work was then configured, and the 
parameters for evaluation, such as the number of 
edge devices, the capacity of the fog resources, the 
network latency, and the processing power, were set. 
These parameters should reflect realistic scenarios 
for accurate testing. 

4.2. Evaluation metrics 

Once the environment and algorithm are 
implemented, performance metrics such as task 
completion time, resource utilization efficiency, and 

load distribution are evaluated. To demonstrate the 
effectiveness of the proposed algorithm, 
performance comparisons were conducted with and 
without its application. The following steps were 
used to assess the proposed algorithm: 

 
● A simulated environment with edge devices, fog 

resources (clusters), a manager, and a cloud is set 
up. This involves deploying and configuring the 
necessary hardware and software components. 

● Generate a set of test tasks or jobs that represent 
different workloads. These tasks should vary in 
size and complexity to simulate real-world 
scenarios. 

● Implement the algorithm steps in your system's 
codebase based on the description provided. It is 
important to ensure that the code accurately 
represents the logic and flow of the algorithm. 

● Test cases that cover different scenarios and edge 
cases are created. 

● Execute the test cases by running the algorithm 
implementation on the test environment. Then, the 
results, including job assignments, load balancing 
decisions, and job completions, are monitored and 
recorded. 

● The test results are analyzed and compared 
against the expected outcomes. The algorithm 
behaves as intended and meets the desired 
objectives, such as load balancing, efficient 
resource utilization, and job completion within 
time slots. 

 
In this work, three metrics, namely, the average 

completion time of the job, the fog resource CPU 
utilization of the fog resource, and the cloud 
utilization, are used to evaluate the performance of 
the proposed algorithm. These metrics are described 
as follows. 

Fog resource utilization (FRU): In the proposed 
work, only the CPU utilization, which is based on 
computational tasks, is used. Therefore, the CPU 
utilization is computed via Eq. 1. 
 

𝐹𝑅𝑈 (𝑓𝑠) =  
𝑈𝑠𝑒𝑑𝐶(𝑓𝑠)

𝑇𝑜𝑡𝑎𝑙𝐶(𝑓𝑠)
∗  100                                 (1) 

 
where, 𝑈𝑠𝑒𝑑𝐶 is the used CPU for all tasks executed 
in server fs, and 𝑇𝑜𝑡𝑎𝑙𝐶(𝑓𝑠) is the total CPU of fog fs. 
 

Cloud utilization (CU): This paper focuses on the 
cloud utilization of computing resources. Therefore, 
the cloud utilization is computed via Eq. 2. 

 

𝐶𝑈 (𝑓𝑠) =
𝑈𝑠𝑒𝑑𝐶(𝑓𝑠)

𝑇𝑜𝑡𝑎𝑙𝐶(𝑓𝑠)
∗ 100                                     (2) 

 
where, 𝑈𝑠𝑒𝑑𝐶 is the used CPU for all the tasks 
executed in server fs, and 𝑇𝑜𝑡𝑎𝑙𝐶(𝑓𝑠) is the total CPU 
of fog fs. 

 
Average completed time (ACT): The average 

completed time of a job is measured by computing 
the difference between the time of submitting the job 



Alkayal et al/International Journal of Advanced and Applied Sciences, 11(10) 2024, Pages: 196-205 

202 
 

to the system and the time of finishing the execution 
of the job, as shown in Eq. 3. 

 
𝐴𝐶𝑇 (𝑓𝑠) =  𝐹𝑖𝑛𝐸𝑥𝑐𝑡(𝑡) −  𝑆𝑢𝑏𝑡(𝑡)                                    (3) 

 
where, 𝐹𝑖𝑛𝐸𝑥𝑐𝑇(𝑡) denotes the finish time of the 
execution of job t, and 𝑆𝑢𝑏𝑇(𝑡) denotes the 
submission time of job t. 

4.3. Performance results of the proposed method 

To assess the proposed algorithm, experiments 
were conducted using 3, 4, and 5 clusters with 

varying numbers of edge devices to measure its 
effectiveness. The results are presented in Tables 1 
and 2.  

Table 1 displays the average completion time for 
assigned tasks, both with and without applying the 
DDR algorithm, across different scenarios. The 
findings indicate an improvement in completion time 
when using the DDR algorithm. Table 2 presents the 
CPU utilization results for 3, 4, and 5 clusters, 
comparing scenarios with and without DDR. The 
results demonstrate an increase in CPU utilization 
when the DDR algorithm is applied. 

 
Table 1: The average time of completed tasks (seconds) 

Clusters Applying DRR Edge devices Number-of-tasks Average time 
3 Yes 15 2456 7.8257 
3 No 15 2503 9.1014 
4 Yes 22 3621 8.2239 
4 No 22 3603 9.7643 
5 Yes 30 5007 8.7926 
5 No 30 4947 10.7558 

 
Table 2: CPU utilization results with DRR and without DRR in 3, 4, and 5 clusters 

Clusters Applying DRR CPU utilization 3 clusters CPU utilization 4 clusters CPU utilization 5 clusters 
FR1 True 75.24 85.1297 95.9081 
FR1 False 63.473 62.275 63.772 
FR2 True 79.341 83.5329 90.01 
FR2 False 74.351 75.648 73.253 
FR3 True 84.1317 86.3273 92.415 
FR3 False 85.7285 82.834 82.135 
FR4 - - 91.2175 92.415 
FR4 - - 89.121 89.021 
FR5 - - - 95.409 
FR5 - - - 92.814 

 

The CPU utilization comparison in different 
cluster configurations, referred to as "cluster FRs," 
with varying numbers of edge devices is shown in 
Fig. 4. It compares scenarios with and without the 
proposed load balancing manager. Unlike Tables 1 
and 2, which showed that the load balancing 
manager reduces resource utilization or task 
completion times, this chart indicates that CPU 
utilization is greater with the proposed load 
balancing manager across all the cluster 
configurations. This means that the proposed load 
balancing manager can distribute tasks in a way that 
utilizes CPU resources more completely, which could 
be an indication of improved efficiency or a more 
evenly distributed workload among the available 
CPUs. However, the increase in utilization is not 
drastic, indicating a balanced approach to load 
management. 

Table 3 shows the results of the comparison of 
cloud utilization in scenarios with and without 
applying the proposed load balancing manager 
across different numbers of clusters. As shown in 
Fig. 5, the proposed load balancing manager 
effectively reduces cloud utilization across all the 
cluster configurations. The trend suggests that, as 
the number of clusters and edge devices increases, 
the cloud utilization also increases when there is no 
load balancing manager. However, the presence of 
the proposed load balancing manager consistently 
lowers the utilization, indicating a more efficient 

distribution of computing tasks across the fog nodes, 
preventing an overreliance on the cloud. 

 

 
Fig. 4: Comparison of the CPU utilization results before 

and after applying the proposed DRR 

 
Table 3: Cloud utilization with DRR and without DRR with 

2, 3, or 4 clusters 
Clusters Applying DRR Cloud computing 

FR3 T 6.3999 
FR3 F 26.3 
FR4 T 15.19 
FR4 F 49.8 
FR5 T 33.6 
FR5 F 92.89 

 
Fig. 6 compares the average time in seconds to 

complete the tasks in a computing environment with 
different numbers of clusters and edge devices, 
specifically, the effect of using the proposed load 
balancing manager. The chart shows that in all the 
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cluster configurations, the presence of the proposed 
load balancing manager reduces the average time 
required to complete the tasks. This indicates that 
the proposed load balancing manager contributes to 
increasing efficiency and reducing the completion 
time of the tasks as the number of clusters and edge 
devices increases. The trend shows that the time 
savings are more significant as the system scales up, 
highlighting the effectiveness of load balancing in 
larger and more complex environments. 

 

 
Fig. 5: Comparison of the cloud utilization results before 

and after applying the proposed DRR 

 

 
Fig. 6: Comparison of the average time in seconds after 

applying the proposed DRR 

4.4. Discussion of results 

The analysis of CPU utilization, cloud utilization, 
and average task completion times across different 
cluster configurations, with and without the 
proposed load balancing manager, provides valuable 
insights into the effectiveness and impact of the DRR 
load balancing approach. 

The comparison of CPU utilization across various 
cluster configurations demonstrates improved 
efficiency and a more balanced workload 
distribution among available CPUs when using the 
load balancing manager. Regarding cloud utilization, 
the analysis shows that the DRR load balancing 
manager effectively reduces cloud usage in all 
cluster configurations. The trend indicates that 
without a load balancing manager, cloud utilization 
increases as the number of clusters and edge devices 
grows. In contrast, the presence of a load balancing 
manager consistently lowers cloud usage by 

distributing computing tasks more efficiently across 
fog nodes, thus reducing dependency on the cloud. 

The analysis of average task completion times 
further highlights the benefits of load balancing. In 
all configurations, the load balancing manager 
decreases the average time needed to complete 
tasks. This indicates that load balancing enhances 
overall system efficiency, particularly in larger and 
more complex environments where time savings are 
more pronounced. 

This model has several advantages and some 
limitations. Most of the advantages are described as 
follows:  

 
● Improving CPU utilization: By ensuring an 

effective distribution of the incoming work along 
the available CPU resources, this algorithm 
manages optimal utilization of the available CPU 
resources, which reduces the possibility of having 
some overloaded CPUs and other idle resources at 
the same time. Similarly, (Devi and Uthariaraj, 
2016) highlighted the importance of applying the 
IWRR-optimized scheduling algorithm to improve 
the efficiency and utilization of fog and cloud 
resources. 

● By reducing cloud utilization by approximately 
70%, the algorithm first ensures that any incoming 
job will be assigned to the fog resources. For any 
reason, if the next candidate's fog resource is 
overloaded, the algorithm first searches within the 
other fog resources for any available resource to 
assign the job to instead of assigning the job to the 
cloud. This reduces the number of jobs sent to the 
cloud and minimizes cloud utilization. This finding 
is consistent with the results of Noman and Jasim 
(2021), who reported that the overall performance 
of dynamic and static techniques was better than 
that of static techniques. The DDR results are also 
consistent with the findings of Sinha and Sinha 
(2020) and Garcia-Carballeira et al. (2021), which 
show an enhancement of the improved round-
robin techniques in terms of the efficiency and 
effectiveness of resource utilization in cloud 
computing. 

● By increasing the average time of completing the 
tasks by approximately 15% for any incoming job, 
the algorithm ensures assigning the job to the fog 
resources that are available instead of assigning it 
to the next inline resource, regardless of whether 
this resource is overloaded or not. 

 
In summary, the results of applying DDR in a fog 

environment support the advantages of improving 
the load balancing and scheduling techniques, which 
constitute the core of the DDR algorithm. The 
proposed load balancing algorithm plays a crucial 
role in optimizing fog resource utilization, improving 
efficiency, and reducing completion times in 
distributed computing environments. Compared 
with the traditional SRR algorithm, one of the 
limitations is that the new approach may suffer from 
an additional overhead needed by the load balancing 
manager to add extra computations to decide which 
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resource it will assign the task to. This may also 
increase the overall complexity of the algorithm 
since the load manager must monitor all available 
resources at every assigning cycle to ensure even 
load balancing. 

5. Conclusion and future work 

To improve the performance of the traditional 
static round-robin algorithm, this paper proposes a 
dynamic load balancing approach involving the 
round-robin balancer algorithm to increase the 
utilization of fog resources. The proposed algorithm 
develops a load balancing manager that can 
effectively distribute the load over available fog 
nodes to reduce the need to access cloud computing. 
The simulation results demonstrated that the 
proposed load balancing manager of DRR 
contributed to enhancing the utilization of fog 
resources in terms of CPU utilization, cloud 
utilization, and the average time to complete tasks in 
the different cluster configurations. By effectively 
distributing tasks among available resources, load 
balancing enables a more balanced workload and 
prevents overreliance on the cloud, resulting in 
improved performance and scalability. To further 
improve the performance of the proposed algorithm, 
heuristic and evolutionary algorithms can be applied 
to schedule and optimize tasks/jobs across the fog 
resources. 

The model can be improved by applying machine 
learning to help determine the initialization 
parameters on the basis of the previous data, which 
will improve and optimize the results. 

Acknowledgment  

This project was funded by the Deanship of 
Scientific Research (DSR) at King Abdulaziz 
University, Jeddah, under grant no. (GPIP: 528-865-
2024).  The authors gratefully acknowledge the DSR 
for their technical and financial support. 

Compliance with ethical standards 

Conflict of interest 

The author(s) declared no potential conflicts of 
interest with respect to the research, authorship, 
and/or publication of this article. 

References  

Afzal S and Kavitha G (2019). Load balancing in cloud computing–
A hierarchical taxonomical classification. Journal of Cloud 
Computing, 8: 22.                               
https://doi.org/10.1186/s13677-019-0146-7 

Ali S and Alubady R (2023). RWRR: Remind weighted rounding 
robin for load balancing in fog computing. In the 7th 
International Symposium on Innovative Approaches in Smart 
Technologies, IEEE, Istanbul, Turkey: 1-7.  
https://doi.org/10.1109/ISAS60782.2023.10391499 

Ameen JN and Begum SJ (2022). Evolutionary algorithm based 
adaptive load balancing (EA-ALB) in cloud computing 

framework. Intelligent Automation and Soft Computing, 
34(2): 1281-1294.  
https://doi.org/10.32604/iasc.2022.025137 

Choudhary R and Kothari DA (2018). A novel technique for load 
balancing in cloud computing environment. International 
Journal of Software and Hardware Research in Engineering, 
6(6): 1-5. 

Devi DC and Uthariaraj VR (2016). Load balancing in cloud 
computing environment using improved weighted round 
robin algorithm for nonpreemptive dependent tasks. The 
Scientific World Journal, 2016: 3896065.  
https://doi.org/10.1155/2016/3896065                
PMid:26955656 PMCid:PMC4756214 

Garcia-Carballeira F, Calderon A, and Carretero J (2021). 
Enhancing the power of two choices load balancing algorithm 
using round robin policy. Cluster Computing, 24(2): 611-624. 
https://doi.org/10.1007/s10586-020-03139-6 

Ghosh S and Banerjee C (2018). Dynamic time quantum priority 
based round robin for load balancing in cloud environment. In 
the 4th International Conference on Research in 
Computational Intelligence and Communication Networks, 
IEEE, Kolkata, India: 33-37.  
https://doi.org/10.1109/ICRCICN.2018.8718694 
PMCid:PMC6191404 

Harish G, Nagaraju S, Harish B, and Shaik M (2019). A review on 
fog computing and its applications. International Journal of 
Innovative Technology and Exploring Engineering, 8(6C2): 
2278-3075. 

Haryani N and Jagli D (2014). Dynamic method for load balancing 
in cloud computing. IOSR Journal of Computer Engineering 
(IOSR-JCE), 16(4): 23-28.                      
https://doi.org/10.9790/0661-16442328 

Hidayat T, Azzery Y, and Mahardiko R (2019). Load balancing 
network by using round robin algorithm: A systematic 
literature review. Jurnal Online Informatika, 4(2): 85-89.  
https://doi.org/10.15575/join.v4i2.446 

Mishra SK, Sahoo B, and Parida PP (2020). Load balancing in cloud 
computing: A big picture. Journal of King Saud University-
Computer and Information Sciences, 32(2): 149-158.  
https://doi.org/10.1016/j.jksuci.2018.01.003 

Noman HM and Jasim MN (2021). A comparative performance 
analysis for static and dynamic load balancing techniques in 
software defined network environment. Journal of Physics: 
Conference Series, 1773: 012010.  
https://doi.org/10.1088/1742-6596/1773/1/012010 

Ogundoyin SO and Kamil IA (2021). Optimization techniques and 
applications in fog computing: An exhaustive survey. Swarm 
and Evolutionary Computation, 66: 100937.  
https://doi.org/10.1016/j.swevo.2021.100937 

Pakhrudin NSM, Kassim M, and Idris A (2023). Cloud service 
analysis using round-robin algorithm for quality-of-service 
aware task placement for Internet of Things services. 
International Journal of Electrical and Computer Engineering, 
13(3): 3464-3473.  
https://doi.org/10.11591/ijece.v13i3.pp3464-3473 

Prakash P, Darshaun KG, Yaazhlene P, Ganesh MV, and Vasudha B 
(2017). Fog computing: Issues, challenges and future 
directions. International Journal of Electrical and Computer 
Engineering, 7(6): 3669-3673.  
https://doi.org/10.11591/ijece.v7i6.pp3669-3673 

Shafiq DA, Jhanjhi NZ, and Abdullah A (2022). Load balancing 
techniques in cloud computing environment: A review. 
Journal of King Saud University-Computer and Information 
Sciences, 34(7): 3910-3933.  
https://doi.org/10.1016/j.jksuci.2021.02.007 

Sharma C, Sharma S, Kautish S, Alsallami SA, Khalil EM, and 
Mohamed AW (2022). A new median-average round robin 
scheduling algorithm: An optimal approach for reducing 
turnaround and waiting time. Alexandria Engineering Journal, 

https://doi.org/10.1186/s13677-019-0146-7
https://doi.org/10.1109/ISAS60782.2023.10391499
https://doi.org/10.32604/iasc.2022.025137
https://doi.org/10.1155/2016/3896065
https://doi.org/10.1007/s10586-020-03139-6
https://doi.org/10.1109/ICRCICN.2018.8718694
https://doi.org/10.9790/0661-16442328
https://doi.org/10.15575/join.v4i2.446
https://doi.org/10.1016/j.jksuci.2018.01.003
https://doi.org/10.1088/1742-6596/1773/1/012010
https://doi.org/10.1016/j.swevo.2021.100937
https://doi.org/10.11591/ijece.v13i3.pp3464-3473
https://doi.org/10.11591/ijece.v7i6.pp3669-3673
https://doi.org/10.1016/j.jksuci.2021.02.007


Alkayal et al/International Journal of Advanced and Applied Sciences, 11(10) 2024, Pages: 196-205 

205 
 

61(12): 10527-10538.  
https://doi.org/10.1016/j.aej.2022.04.006 

Sinha G and Sinha D (2020). Enhanced weighted round robin 
algorithm to balance the load for effective utilization of 
resource in cloud environment. EAI Endorsed Transactions on 
Cloud Systems, 6(18): e4.                       
https://doi.org/10.4108/eai.7-9-2020.166284 

Sulimani H, Sulimani R, Ramezani F, Naderpour M, Huo H, Jan T, 
and Prasad M (2024). HybOff: A hybrid offloading approach to 
improve load balancing in fog environments. Journal of Cloud 
Computing, 13: 113.                 
https://doi.org/10.1186/s13677-024-00663-3 

Waghmode ST and Patil BM (2023). Adaptive load balancing in 
cloud computing environment. International Journal of 
Intelligent Systems and Applications in Engineering, 11(1s): 
209-217. 

Wang L and Lu G (2016). The dynamic sub-topology load 
balancing algorithm for data center networks. In the 
International Conference on Information Networking, IEEE, 
Kota Kinabalu, Malaysia: 268-273.  
https://doi.org/10.1109/ICOIN.2016.7427075 

Wang X, Sun Y, and Ding D (2022). Adaptive dynamic 
programming for networked control systems under 
communication constraints: A survey of trends and 
techniques. International Journal of Network Dynamics and 
Intelligence, 1(1): 85-98.  
https://doi.org/10.53941/ijndi0101008 

Xu R, Chen H, Liang X, and Wang H (2016). Priority-based 
constructive algorithms for scheduling agile earth observation 
satellites with total priority maximization. Expert Systems 
with Applications, 51: 195-206.  
https://doi.org/10.1016/j.eswa.2015.12.039 

 

 

https://doi.org/10.1016/j.aej.2022.04.006
https://doi.org/10.4108/eai.7-9-2020.166284
https://doi.org/10.1186/s13677-024-00663-3
https://doi.org/10.1109/ICOIN.2016.7427075
https://doi.org/10.53941/ijndi0101008
https://doi.org/10.1016/j.eswa.2015.12.039

	Improving fog resource utilization with a dynamic round-robin load balancing approach
	1. Introduction
	2. Literature review
	3. The proposed dynamic round-robin loadbalanced algorithm
	4. Experimental implementation and evaluation
	4.1. Simulation setup
	4.2. Evaluation metrics
	4.3. Performance results of the proposed method
	4.4. Discussion of results

	5. Conclusion and future work
	Acknowledgment
	Compliance with ethical standards
	Conflict of interest
	References


