International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 8 (August 2024), Pages: 146-157

----------------------------------------------

 Original Research Paper

Sentiment analysis of movie review classifications using deep learning approaches

 Author(s): 

 Sarwar Shah Khan 1, 2, *, Yasser Alharbi 3

 Affiliation(s):

 1Department of Computer and Software Technology, University of Swat, Swat, Pakistan
 
2Department of Computer Science, IQRA National University, Swat, Pakistan
 3College of Computer Science and Engineering, University of Hail, Hail, Saudi Arabia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-6387-4114

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.08.016

 Abstract

Movie reviews reflect how the public feels about a movie they have watched. However, because many reviews are posted on various websites, it is practically impossible to read each one. Summarizing all movie reviews can help people make informed decisions without reading through all of them. Previous studies have used different machine learning and deep learning techniques for sentiment analysis (SA), but few have combined comprehensive hyperparameter tuning and novel datasets for better performance. This paper presents an SA approach using deep learning models with optimized hyperparameters and a novel Rotten Tomatoes (RT) dataset to help viewers make better movie choices. SA, or opinion mining, is a computational technique to extract and analyze opinions and emotions expressed in text. We explore deep learning models such as Long Short-Term Memory (LSTM), XLNet, Convolutional Neural Networks-LSTM (CNN-LSTM), and Bidirectional Encoder Representations from Transformers (BERT). These models are known for capturing complex language patterns and context from raw text data. XLNet, a pre-trained model, effectively understands context by considering all possible permutations of the input sequence, BERT excels at using bidirectional context to understand text, LSTM retains information about long-term patterns in sequential data, and CNN-LSTM combines local and global context for reliable feature extraction. The RT dataset was pre-processed with data cleaning, spelling correction, lemmatization, and handling of informal words to improve the results. Our experiments show that XLNet performed better than other models on the Rotten Tomatoes dataset. The study demonstrates that SA of movie reviews provides insights into emotions and attitudes, allowing us to estimate a movie’s performance based on its overall sentiment.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Sentiment analysis, Deep learning models, XLNet, Rotten Tomatoes dataset, Movie reviews

 Article history

 Received 7 April 2024, Received in revised form 9 August 2024, Accepted 18 August 2024

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Khan SS and Alharbi Y (2024). Sentiment analysis of movie review classifications using deep learning approaches. International Journal of Advanced and Applied Sciences, 11(8): 146-157

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 

----------------------------------------------   

 References (36)

  1. Abimanyu A, Pranowo WS, Faizal I, Afandi NK, and Purba NP (2021). Reconstruction of oil spill trajectory in the Java Sea, Indonesia using SAR imagery. Geography, Environment, Sustainability, 14(1): 177-184. https://doi.org/10.24057/2071-9388-2020-21   [Google Scholar]
  2. Abimanyu AJ, Dwifebri M, and Astuti W (2023). Sentiment analysis on movie review from rotten tomatoes using logistic regression and information gain feature selection. Building of Informatics, Technology and Science, 5(1): 162-170. https://doi.org/10.47065/bits.v5i1.3595   [Google Scholar]
  3. Agrawal T (2021). Introduction to hyperparameters. In: Agrawal T (Ed.), Hyperparameter optimization in machine learning: Make your machine learning and deep learning models more efficient: 4-5. APRESS, New York, USA. https://doi.org/10.1007/978-1-4842-6579-6   [Google Scholar]
  4. Aziz MM, Purbalaksono MD, and Adiwijaya A (2023). Method comparison of Naïve Bayes, logistic regression, and SVM for analyzing movie reviews. Building of Informatics, Technology and Science, 4(4): 1714-1720. https://doi.org/10.47065/bits.v4i4.2644   [Google Scholar]
  5. Banik N and Rahman MHH (2018). Evaluation of Naïve Bayes and support vector machines on Bangla textual movie reviews. In the International Conference on Bangla Speech and Language Processing, IEEE, Sylhet, Bangladesh: 1-6. https://doi.org/10.1109/ICBSLP.2018.8554497   [Google Scholar]
  6. Başarslan MS and Kayaalp F (2023). Sentiment analysis with ensemble and machine learning methods in multi-domain datasets. Turkish Journal of Engineering, 7(2): 141-148. https://doi.org/10.31127/tuje.1079698   [Google Scholar]
  7. Chakraborty K, Bhattacharyya S, Bag R, and Hassanien AE (2018). Comparative sentiment analysis on a set of movie reviews using deep learning approach. In: Hassanien A, Tolba M, Elhoseny M, and Mostafa M (Eds.), The international conference on advanced machine learning technologies and applications: Advances in intelligent systems and computing: 311-318, Volume 723. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-74690-6_31   [Google Scholar]
  8. Dang NC, Moreno-García MN, and De la Prieta F (2020). Sentiment analysis based on deep learning: A comparative study. Electronics, 9(3): 483. https://doi.org/10.3390/electronics9030483   [Google Scholar]
  9. Danyal MM, Haseeb M, Khan SS, Khan B, and Ullah S (2024a). Opinion mining on movie reviews based on deep learning models. Journal of Artificial Intelligence, 6: 23-42. https://doi.org/10.32604/jai.2023.045617   [Google Scholar]
  10. Danyal MM, Khan SS, Khan M, Ghaffar MB, Khan B, and Arshad M (2023). Sentiment analysis based on performance of linear support vector machine and multinomial Naïve Bayes using movie reviews with baseline techniques. Journal on Big Data, 5: 1-18. https://doi.org/10.32604/jbd.2023.041319   [Google Scholar]
  11. Danyal MM, Khan SS, Khan M, Ullah S, Ghaffar MB, and Khan W (2024b). Sentiment analysis of movie reviews based on NB approaches using TF–IDF and count vectorizer. Social Network Analysis and Mining, 14: 87. https://doi.org/10.1007/s13278-024-01250-9   [Google Scholar]
  12. Danyal MM, Khan SS, Khan M, Ullah S, Mehmood F, and Ali I (2024c). Proposing sentiment analysis model based on BERT and XLNet for movie reviews. Multimedia Tools and Applications, 83: 64315–64339. https://doi.org/10.1007/s11042-024-18156-5   [Google Scholar]
  13. Dashtipour K, Gogate M, Adeel A, Larijani H, and Hussain A (2021). Sentiment analysis of Persian movie reviews using deep learning. Entropy, 23(5): 596. https://doi.org/10.3390/e23050596   [Google Scholar] PMid:34066133 PMCid:PMC8151596
  14. Deepa D, Nafais AS, Kumar BM, Prasath JR, Suba T, and Jenopaul P (2021). Analyzing the performance of bidirectional transformer and generalized autoregressive permutation pre-trained language models for sentiment classification task. Annals of the Romanian Society for Cell Biology, 25(6): 7598-7604.   [Google Scholar]
  15. Devlin J, Chang MW, Lee K, and Toutanova K (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. Arxiv Preprint Arxiv:1810.04805. https://doi.org/10.48550/arXiv.1810.04805   [Google Scholar]
  16. Dhivyaa CR, Nithya K, Sendooran G, Sudhakar R, Kumar KS, and Kumar SS (2023). XLNet transfer learning model for sentimental analysis. In the International Conference on Sustainable Computing and Smart Systems, IEEE, Coimbatore, India: 76-84. https://doi.org/10.1109/ICSCSS57650.2023.10169445   [Google Scholar]
  17. Dholpuria T, Rana YK, and Agrawal C (2018). A sentiment analysis approach through deep learning for a movie review. In the 8th International Conference on Communication Systems and Network Technologies, IEEE, Bhopal, India: 173-181. https://doi.org/10.1109/CSNT.2018.8820260   [Google Scholar]
  18. Khan B, Arshad M, and Khan SS (2023). Comparative analysis of machine learning models for PDF malware detection: Evaluating different training and testing criteria. Journal of Cybersecurity, 5: 1-11. https://doi.org/10.32604/jcs.2023.042501   [Google Scholar]
  19. Khan M, Khan MS, and Alharbi Y (2020). Text mining challenges and applications: A comprehensive review. International Journal of Computer Science and Network Security, 20(12): 138-148.   [Google Scholar]
  20. Khan SS, Khan M, Ran Q, and Naseem R (2018). Challenges in opinion mining, comprehensive review. A Science and Technology Journal, 33(11): 123-135.   [Google Scholar]
  21. Leone S (2020). Rotten Tomatoes movies and critic reviews dataset. Kaggle, San Francisco, USA.   [Google Scholar]
  22. Li H, Zhang X, Liu Y, Zhang Y, Wang Q, Zhou X, Liu J, Wu H, and Wang H (2019). D-NET: A pre-training and fine-tuning framework for improving the generalization of machine reading comprehension. In the Proceedings of the 2nd Workshop on Machine Reading for Question Answering: 212–219, Hong Kong, China. https://doi.org/10.18653/v1/D19-5828   [Google Scholar]
  23. Liachoudis G (2020). Sentiment analysis of movie reviews by merging comments from two well-known platforms. Ph.D. Dissertation, Tilburg University, Tilburg, Netherlands.   [Google Scholar]
  24. Lou Y (2023). Deep learning-based sentiment analysis of movie reviews. In the 3rd International Conference on Machine Learning and Computer Application, SPIE, Shenyang, China: 12636: 177-184.   [Google Scholar]
  25. Mutegeki R and Han DS (2020). A CNN-LSTM approach to human activity recognition. In the International Conference on Artificial Intelligence in Information and Communication, IEEE, Fukuoka, Japan: 362-366. https://doi.org/10.1109/ICAIIC48513.2020.9065078   [Google Scholar]
  26. Nath D and Roy J (2023). Forecast of movie sentiment based on multi label text classification on rotten tomatoes using multiple machine and deep learning technique. In: Mercier-Laurent E, Fernando X, and Chandrabose A (Eds.), Computer, communication, and signal processing: AI, knowledge engineering and IoT for smart systems: 128-142. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-031-39811-7_11   [Google Scholar]
  27. Palomo BA, Velarde FH, Cantu-Ortiz FJ, and Ceballos Cancino HG (2024). Sentiment analysis of IMDB movie reviews using deep learning techniques. In: Yang XS, Sherratt RS, Dey N, and Joshi A (Eds.), Proceedings of eighth international congress on information and communication technology. ICICT 2023. Lecture Notes in Networks and Systems, Volume 696. Springer, Singapore, Singapore. https://doi.org/10.1007/978-981-99-3236-8_33   [Google Scholar]
  28. Putrada AG, Alamsyah N, and Fauzan MN (2023). BERT for sentiment analysis on rotten tomatoes reviews. In the International Conference on Data Science and Its Applications (ICoDSA), IEEE, Bandung, Indonesia: 111-116. https://doi.org/10.1109/ICoDSA58501.2023.10276800   [Google Scholar]
  29. Rahman A and Hossen MS (2019). Sentiment analysis on movie review data using machine learning approach. In the International Conference on Bangla Speech and Language Processing, IEEE, Sylhet, Bangladesh: 1-4. https://doi.org/10.1109/ICBSLP47725.2019.201470   [Google Scholar]
  30. Sherstinsky A (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404: 132306. https://doi.org/10.1016/j.physd.2019.132306   [Google Scholar]
  31. Tripathy A, Anand A, and Kadyan V (2023). Sentiment classification of movie reviews using GA and NeuroGA. Multimedia Tools and Applications, 82(6): 7991-8011. https://doi.org/10.1007/s11042-022-13047-z   [Google Scholar]
  32. Ullah K, Rashad A, Khan M, Ghadi Y, Aljuaid H, and Nawaz Z (2022). A deep neural network‐based approach for sentiment analysis of movie reviews. Complexity, 2022: 5217491. https://doi.org/10.1155/2022/5217491   [Google Scholar]
  33. Van Houdt G, Mosquera C, and Nápoles G (2020). A review on the long short-term memory model. Artificial Intelligence Review, 53(8): 5929-5955. https://doi.org/10.1007/s10462-020-09838-1   [Google Scholar]
  34. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR, and Le QV (2019). XLNET: Generalized autoregressive pretraining for language understanding. In the 33rd Conference on Neural Information Processing Systems, Vancouver, Canada: 1-18.   [Google Scholar]
  35. Yasen M and Tedmori S (2019). Movies reviews sentiment analysis and classification. In the IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology, IEEE, Amman, Jordan: 860-865. https://doi.org/10.1109/JEEIT.2019.8717422   [Google Scholar]
  36. Zhang L, Wang S, and Liu B (2018). Deep learning for sentiment analysis: A survey. WIREs: Data Mining and Knowledge Discovery, 8(4): e1253. https://doi.org/10.1002/widm.1253   [Google Scholar]