International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 8 (August 2024), Pages: 127-134

----------------------------------------------

 Original Research Paper

Breeding of local white glutinous corn (Zea mays ceratina L.) with multigamma irradiation methods to obtain superior mutant cultivars

 Author(s): 

 Bartholomeus Pasangka 1, *, Irvandi Gorby Pasangka 2

 Affiliation(s):

 1Department of Physics, Faculty of Sciences and Engineering, Nusa Cendana University Indonesia, Kupang, Indonesia
 2Department of Mathematics, Faculty of Sciences and Engineering, Nusa Cendana University Indonesia, Kupang, Indonesia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-7278-8453

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.08.014

 Abstract

This study aims to enhance local white glutinous corn through breeding with multigamma irradiation to develop high-yielding varieties that are resilient to extreme weather, drought stress, and pests. The research addresses the significant decline in white sticky corn production due to adverse conditions and a lack of superior seeds. Methods included observation, sampling, irradiation at 3000 rads for 30 minutes, and rigorous selection processes. The results showed that the newly developed corn varieties adapted well to harsh conditions and exhibited a substantial increase in production, averaging 12.16 tonnes per hectare compared to the parent variety's 7.15 tonnes per hectare, reflecting a 41.20% production increase. This method significantly outperformed conventional breeding techniques, which yielded between 2.50 and 3.21 tonnes per hectare.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Multigamma irradiation, High-yielding varieties, Drought stress resistance, Pest and disease tolerance, White glutinous corn

 Article history

 Received 14 April 2024, Received in revised form 1 August 2024, Accepted 4 August 2024

 Acknowledgment 

This work was supported and funded by Decentralization Research, Directorate of Research and Public Service, Department of Education and Culture of Indonesia Government and Technology Research through University of Excellence Applied Research of Nusa Cendana University with grant number: 171/UN15.19/LT/2023 (Professor's Research). Especial thanks to authorized officials who had funded this research and special thanks to all colleagues in the research who have worked well together to write this manuscript.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Pasangka B and Pasangka IG (2024). Breeding of local white glutinous corn (Zea mays ceratina L.) with multigamma irradiation methods to obtain superior mutant cultivars. International Journal of Advanced and Applied Sciences, 11(8): 127-134

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 

 Tables

 Table 1 Table 2 Table 3 

----------------------------------------------   

 References (24)

  1. Amzeri A (2018). Overview of the development of maize farming in Madura and alternative processing into biomaterials. Rekayasa, 11(1): 74-86. https://doi.org/10.21107/rekayasa.v11i1.4127   [Google Scholar]
  2. Edy E (2020). Karakterisasi genotipe F1 dan F2 jagung varietas srikandi putih dan lokal pulut pada jarak tanam yang berbeda. Agrosains: Jurnal Penelitian Agronomi, 22(1): 32-38. https://doi.org/10.20961/agsjpa.v22i1.36006   [Google Scholar]
  3. Hairuddin R, Idris MY, and Nur K (2023). Organogenesis of corn plants (Zea mays L.) at various concentrations of auxin and cytokinin plant growth regulators in vitro. Asian Journal of Agriculture and Rural Development, 13(1): 91-97. https://doi.org/10.55493/5005.v13i1.4770   [Google Scholar]
  4. Helilusiatiningsih N, Oktaviani K, and Fitriyah N (2022). Growth response and production of sweet corn (Zea mays L. saccharata Sturt) Perkasa F1 variety with application of POC and humic acid. Formosa Journal of Science and Technology, 1(8): 1261-1274. https://doi.org/10.55927/fjst.v1i8.2247   [Google Scholar]
  5. Jamidi J, Wirda Z, and Pohan MAA (2022). Increased production of corn (Zea Mays, L) varieties Lamuru, Bisma, Sukmaraga in marginal critical land with the use of cow manure in North Aceh Regency. International Journal of Science and Environment, 2(3): 85-97. https://doi.org/10.51601/ijse.v2i2.20   [Google Scholar]
  6. Khalafi A, Mohsenifar K, Gholami A, and BarzegaM (2021). Corn (Zea mays L.) growth, yield and nutritional properties affected by fertilization methods and micronutrient use. International Journal of Plant Production, 15(4): 589-597. https://doi.org/10.1007/s42106-021-00148-2   [Google Scholar]
  7. Malelak ND, Pasangka B, and Mbiliyora C (2023). Pemuliaan kacang tanah lokal jumbo tipe tegak rote ndao dengan metode irradiasi multigamma untuk mendapatkan varietas bakal unggul. Jurnal Fisika: Fisika Sains dan Aplikasinya, 8(1): 50-55. https://doi.org/10.35508/fisa.v8i1.11824   [Google Scholar]
  8. Muntean L, Ona A, Berindean I, Racz I, and Muntean S (2022). Maize breeding: From domestication to genomic tools. Agronomy, 12(10): 2365. https://doi.org/10.3390/agronomy12102365   [Google Scholar]
  9. Nurhafidah, Rahmat A, Karre A, and Juraeje HH (2021). Uji viabilitas beberapa jenis varietas jagung (Zea Mays) dengan menggunakan metode yang berbeda. Agroplantae: Jurnal Ilmiah Terapan Budidaya dan Pengelolaan Tanaman Pertanian dan Perkebunan, 10(1): 30-39. https://doi.org/10.51978/agro.v10i1.254   [Google Scholar]
  10. Pasangka B (2010). The breeding of local corn by multigamma radiation method (nuclear) in West Timor Nusa Tenggara Timur. Jurnal Teknologi Technoscientia, 3(1): 8-21.   [Google Scholar]
  11. Pasangka B and Irvandi P (2021). Continuous development and cultivation of soybean as a result of multigamma irradiation through final purifying method. Journal of Research in Science Education, 7(2): 156-166. https://doi.org/10.29303/jppipa.v7i2.611   [Google Scholar]
  12. Pasangka B and Pasangka IG (2023). Improvement of local purple corn (Zea mays) variety with multigamma irradiation (nuclear) techniques. AIP Conference Proceedings, 2619(1): 050001. https://doi.org/10.1063/5.0122784   [Google Scholar]
  13. Pasangka B and Refli R (2022). Genetic improvement of local red peanut with using nuclear technique (Multigamma irradiation) for obtaining superior variety. Journal of Agricultural Science, 14(1): 94-103. https://doi.org/10.5539/jas.v14n1p94   [Google Scholar]
  14. Pasangka B and Wahid A (2021). Genetic engineering of local cayenne pepper (Capsicum frustescens L.): Through breeding with multigamma irradiation methods to obtain superior offspring. Journal of Agricultural Science, 13(12): 81-90. https://doi.org/10.5539/jas.v13n12p81   [Google Scholar]
  15. Pasangka B, Wahid A, and Pasangka IG (2022). Development of Timor local red peanut with multi gamma irradiation technique for obtaining several superior mutant cultivars that tolerant of drought stress, disease pests, and high production. Journal of Physics: Conference Series, 2165: 012001. https://doi.org/10.1088/1742-6596/2165/1/012001   [Google Scholar]
  16. Pasangka RB and Refli (2021). Development of local green spinach plants by application of nuclear physics methods (standard multi-gamma irradiation). Journal of Southwest Jiaotong University, 56(6): 430-438. https://doi.org/10.35741/issn.0258-2724.56.6.37   [Google Scholar]
  17. Rani P, Saini I, Singh N, Kaushik P, Wijaya L, Al-Barty A, Darwish H, and Noureldeen A (2021). Effect of potassium fertilizer on the growth, physiological parameters, and water status of Brassica juncea cultivars under different irrigation regimes. PLOS ONE, 16(9): e0257023. https://doi.org/10.1371/journal.pone.0257023   [Google Scholar]
  18. Rinanti T, Herlina N, and Rifianto A (2021). Efek populasi terhadap pertumbuhan dan hasil serta umur pencapaian fase perkembangan tiga varietas jagung manis (Zea mays var. Saccharata) di dataran menengah. Plantropica: Journal of Agricultural Science, 6(1): 1-10. https://doi.org/10.21776/ub.jpt.2020.006.1.1   [Google Scholar]
  19. Sari DP, Wilman SB, and Gusmara H (2017). The effect of palm oil sludge and dosages of NPK fertilizer on growth and field of sweet corn in ultisols. Agritrop, 15(1): 138-150.   [Google Scholar]
  20. Simanihuruk BW, Lumbantoruan YO, and Gusmara H (2020). Takaran dosis lumpur sawit dan pupuk kcl terhadap pertumbuhan dan hasil tanaman jagung (Zea mays L) pada ultisols di bengkulu. Jurnal Ilmu-Ilmu Pertanian Indonesia, 22(2): 85-92. https://doi.org/10.31186/jipi.22.2.85-92   [Google Scholar]
  21. Sutresna IW, Sudika IW, and Anugrahwati DR (2021). Improving technology for cultivation of free-split corn as an effort to increase farmers' production and income. In the National Seminar for the 45th Anniversary of UNS, Surakarta, Indonesia, 5: 1.   [Google Scholar]
  22. Swapna G, Jadesha G, and Mahadevu P (2020). Sweet corn–A future healthy human nutrition food. International Journal of Current Microbiology and Applied Sciences, 9(7): 3859-3865. https://doi.org/10.20546/ijcmas.2020.907.452   [Google Scholar]
  23. Tahaei SA, Nasri M, Soleymani A, Ghooshchi F, and Oveysi M (2022). Plant growth regulators affecting corn (Zea mays L.) physiology and rab17 expression under drought conditions. Biocatalysis and Agricultural Biotechnology, 41: 102288. https://doi.org/10.1016/j.bcab.2022.102288   [Google Scholar]
  24. Wahyudin A and Fitriatin BN (2017). Response of maize due to application of phosphate fertilizers and application time of phosphate solubizing microbes at Ultisols Jatinagor. Kultivasi, 16(1): 246-254.   [Google Scholar]