International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 8 (August 2024), Pages: 89-97

----------------------------------------------

 Original Research Paper

Exact solutions of the nonlinear space-time fractional Schamel equation

 Author(s): 

 Elzain A. E. Gumma 1, *, Abaker A. Hassaballa 1, Fathea M. O. Birkea 1, Ahmed M. A. Adam 1, Ali Satty 1, Emad A. B. Abdel-Salam 2, Eltayeb A. Yousif 3, Mohamed I. Nouh 4

 Affiliation(s):

 1Department of Mathematics, College of Science, Northern Border University, Arar, Saudi Arabia
 2Department of Mathematics, Faculty of Science, New Valley University, Elkharga, Egypt
 3Department of Applied Mathematics, Faculty of Mathematical Sciences and Informatics, University of Khartoum, Khartoum, Sudan
 4Astronomy Department, National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Egypt

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0009-0003-3241-1250

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.08.010

 Abstract

This study focuses on the nonlinear space-time behavior of a plasma system made up of electrons, positive ions, and negative ions using the fractional Schamel (FS) equation. The main goal is to find exact solutions to the nonlinear FS equation by applying the extended hyperbolic function (EHF) method. The study examines how the fractional order affects the phase velocity, amplitude, and wave width of solitary wave solutions. Different exact solutions were found based on various values of the fractional order. Graphical representations are included to show the physical properties of these solutions. Overall, the results demonstrate that the EHF method is effective and reliable for finding exact solutions to the nonlinear FS equation.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Nonlinear space-time dynamics, Plasma system, Fractional Schamel equation, Extended hyperbolic function method, Solitary wave solutions

 Article history

 Received 30 March 2024, Received in revised form 28 July 2024, Accepted 1 August 2024

 Acknowledgment 

The authors gratefully acknowledge the support given for this research study by grant no. SCIA-2022-11-1731 from the Deanship of Scientific Research at Northern Border University, Arar, Saudi Arabia.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Gumma EAE, Hassaballa AA, Birkea FMO, Adam AMA, Satty A, Abdel-Salam EAB, Yousif EA, and Nouh MI (2024). Exact solutions of the nonlinear space-time fractional Schamel equation. International Journal of Advanced and Applied Sciences, 11(8): 89-97

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 

 Tables

 No Table

----------------------------------------------   

 References (21)

  1. Abdeljawad T and Abd Al-Aziz Ahmed H (2015). On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279: 57-66. https://doi.org/10.1016/j.cam.2014.10.016   [Google Scholar]
  2. Cho GS (1990). Effect of negative ions on stimulated Raman scattering in a plasma. Physics of Fluids B: Plasma Physics, 2(9): 2272-2273. https://doi.org/10.1063/1.859411   [Google Scholar]
  3. El-Ajou A, Al-Zhour Z, Oqielat MA, Momani S, and Hayat T (2019). Series solutions of nonlinear conformable fractional KdV-Burgers equation with some applications. The European Physical Journal Plus, 134: 402. https://doi.org/10.1140/epjp/i2019-12731-x   [Google Scholar]
  4. El-Kalaawy OH (2011). Exact solitary solution of Schamel equation in plasmas with negative ions. Physics of Plasmas, 18: 112302. https://doi.org/10.1063/1.3657422   [Google Scholar]
  5. Ghosh KK, Paul B, Das C, and Paul SN (2008). An analytical study of ion-acoustic solitary waves in a plasma consisting of two-temperature electrons and warm drift ions. Journal of Physics A: Mathematical and Theoretical, 41(33): 335501. https://doi.org/10.1088/1751-8113/41/33/335501   [Google Scholar]
  6. Hafez MG, Talukder MR, and Sakthivel R (2016). Ion acoustic solitary waves in plasmas with nonextensive distributed electrons, positrons and relativistic thermal ions. Indian Journal of Physics, 90: 603-611. https://doi.org/10.1007/s12648-015-0782-9   [Google Scholar]
  7. Hassan MM (2010). New exact solutions of two nonlinear physical models. Communications in Theoretical Physics, 53(4): 596-604. https://doi.org/10.1088/0253-6102/53/4/02   [Google Scholar]
  8. Hietarinta J (1987). A search for bilinear equations passing Hirota’s three‐soliton condition: II: mKdV‐type bilinear equations. Journal of Mathematical Physics, 28(9): 2094-2101. https://doi.org/10.1063/1.527421   [Google Scholar]
  9. Hirota R (2004). The direct method in soliton theory. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511543043   [Google Scholar]
  10. Karakoç SBG, Ali KK, and Mehanna M (2023). Exact traveling wave solutions of the Schamel-KdV equation with two different methods. Universal Journal of Mathematics and Applications, 6(2): 65-75. https://doi.org/10.32323/ujma.1287524   [Google Scholar]
  11. Khalil R, Al Horani M, Yousef A, and Sababheh M (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264: 65-70. https://doi.org/10.1016/j.cam.2014.01.002   [Google Scholar]
  12. Rehman HU, Awan AU, Tag-ElDin EM, Alhazmi SE, Yassen MF, and Haider R (2022). Extended hyperbolic function method for the (2+1)-dimensional nonlinear soliton equation. Results in Physics, 40: 105802. https://doi.org/10.1016/j.rinp.2022.105802   [Google Scholar]
  13. Rezazadeh H, Korkmaz A, Achab AE, Adel W, and Bekir A (2021). New travelling wave solution-based new Riccati equation for solving KdV and modified KdV equations. Applied Mathematics and Nonlinear Sciences, 6(1): 447-458. https://doi.org/10.2478/amns.2020.2.00034   [Google Scholar]
  14. Scales WA and Bernhardt PA (1991). Simulation of high‐speed (orbital) releases of electron attachment materials in the ionosphere. Journal of Geophysical Research: Space Physics, 96(A8): 13815-13828. https://doi.org/10.1029/91JA01084   [Google Scholar]
  15. Schamel H (1973). A modified Korteweg-de Vries equation for ion acoustic wavess due to resonant electrons. Journal of Plasma Physics, 9(3): 377-387. https://doi.org/10.1017/S002237780000756X   [Google Scholar]
  16. Shang Y (2008). The extended hyperbolic function method and exact solutions of the long–short wave resonance equations. Chaos, Solitons and Fractals, 36(3): 762-771. https://doi.org/10.1016/j.chaos.2006.07.007   [Google Scholar]
  17. Sirendaoreji (2007). Exact travelling wave solutions for four forms of nonlinear Klein–Gordon equations. Physics Letters A, 363(5-6): 440-447. https://doi.org/10.1016/j.physleta.2006.11.049   [Google Scholar]
  18. Wazwaz AM (2010). Partial differential equations and solitary waves theory. Springer Science and Business Media, Berlin, Germany. https://doi.org/10.1007/978-3-642-00251-9   [Google Scholar]
  19. Williams G, Verheest F, Hellberg MA, Anowar MGM, and Kourakis I (2014). A Schamel equation for ion acoustic waves in superthermal plasmas. Physics of Plasmas, 21: 092103. https://doi.org/10.1063/1.4894115   [Google Scholar]
  20. Xue-Qin Z and Hong-Yan Z (2008). An improved f-expansion method and its application to coupled Drinfel'd–Sokolov–Wilson equation. Communications in Theoretical Physics, 50(2): 309-314. https://doi.org/10.1088/0253-6102/50/2/05   [Google Scholar]
  21. Zhong S, Zhao Z, and Wan X (2023). Solitons for the coupled matrix nonlinear Schrödinger-type equations and the related Schrödinger flow. Open Mathematics, 21: 20220600. https://doi.org/10.1515/math-2022-0600   [Google Scholar]