International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 7 (July 2024), Pages: 49-56

----------------------------------------------

 Original Research Paper

Stein estimation in the Conway-Maxwell Poisson model with correlated regressors

 Author(s): 

 Faiza Sami 1, Muhammad Amin 1, *, Sadiah M. A. Aljeddani 2

 Affiliation(s):

 1Department of Statistics, University of Sargodha, Sargodha, Pakistan
 2Department of Mathematics, Al-Lith College, Umm Al-Qura University, Al-Lith, Saudi Arabia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-7431-5756

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.07.006

 Abstract

The Poisson regression model (PRM) is widely used for count data, applicable when the response variable follows a Poisson distribution with equal dispersion. The Conway-Maxwell Poisson regression model (COMPRM) is more flexible and can handle both under-dispersion and over-dispersion. However, the COMPRM may involve correlated regressors, leading to multicollinearity, which makes the maximum likelihood estimator (MLE) inefficient. Biased estimation methods can address multicollinearity in data. This study proposes a Stein estimator, a biased estimation method, for the COMPRM that can simultaneously address correlated regressors and dispersion issues. The estimated mean square error (EMSE) is used to evaluate performance. The proposed estimator's performance is assessed both theoretically and numerically. The numerical evaluations include a simulation study under various parametric conditions and a real-world application. The results from both the simulation study and the real application demonstrate that the Stein estimator outperforms the MLE.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Conway-Maxwell Poisson regression, Correlated regressors, Stein estimator, Mean squared error, Multicollinearity

 Article history

 Received 25 January 2024, Received in revised form 18 June 2024, Accepted 26 June 2024

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Sami F, Amin M, and Aljeddani SMA (2024). Stein estimation in the Conway-Maxwell Poisson model with correlated regressors. International Journal of Advanced and Applied Sciences, 11(7): 49-56

 Permanent Link to this page

 Figures

 No Figure

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 

----------------------------------------------   

 References (21)

  1. Akram MN, Amin M, and Amanullah M (2021). James Stein estimator for the inverse Gaussian regression model. Iranian Journal of Science and Technology, Transaction A: Science, 45: 1389-1403. https://doi.org/10.1007/s40995-021-01133-0   [Google Scholar]
  2. Amin M, Akram MN, and Amanullah M (2022). On the James-Stein estimator for the Poisson regression model. Communications in Statistics-Simulation and Computation, 51(10): 5596-5608. https://doi.org/10.1080/03610918.2020.1775851   [Google Scholar]
  3. Amin M, Akram MN, and Majid A (2023b). On the estimation of Bell regression model using ridge estimator. Communications in Statistics-Simulation and Computation, 52(3): 854-867. https://doi.org/10.1080/03610918.2020.1870694   [Google Scholar]
  4. Amin M, Ashraf H, Bakouch HS, and Qarmalah N (2023a). James Stein estimator for the Beta regression model with application to heat-treating test and body fat datasets. Axioms, 12(6): 526. https://doi.org/10.3390/axioms12060526   [Google Scholar]
  5. Azaman MD, Sapuan SM, Sulaiman S, Zainudin ES, and Khalina, A (2013). Shrinkages and warpage in the processability of wood-filled polypropylene composite thin-walled parts formed by injection molding. Materials & Design (1980-2015), 52: 1018-1026. https://doi.org/10.1016/j.matdes.2013.06.047   [Google Scholar]
  6. Chatla SB and Shmueli G (2018). Efficient estimation of COM–Poisson regression and a generalized additive model. Computational Statistics & Data Analysis, 121: 71-88. https://doi.org/10.1016/j.csda.2017.11.011   [Google Scholar]
  7. Conwaay RW and Maxwell W (1962). A queuing model with state dependent service rates. Journal of Industrial Engineering, 12: 132-136.   [Google Scholar]
  8. Demirkir C, Özsahin Ş, Aydin I, and Colakoglu G (2013). Optimization of some panel manufacturing parameters for the best bonding strength of plywood. International Journal of Adhesion and Adhesives, 46: 14-20. https://doi.org/10.1016/j.ijadhadh.2013.05.007   [Google Scholar]
  9. Fang L, Chang L, Guo WJ, Chen Y, and Wang Z (2014). Influence of silane surface modification of veneer on interfacial adhesion of wood–plastic plywood. Applied Surface Science, 288: 682-689. https://doi.org/10.1016/j.apsusc.2013.10.098   [Google Scholar]
  10. Farebrother RW (1976). Further results on the mean square error of ridge regression. Journal of the Royal Statistical Society. Series B (Methodological), 38 (3): 248-250. https://doi.org/10.1111/j.2517-6161.1976.tb01588.x   [Google Scholar]
  11. Francis RA, Geedipally SR, Guikema SD, Dhavala SS, Lord D, and LaRocca S (2012). Characterizing the performance of the Conway-Maxwell Poisson generalized linear model. Risk Analysis: An International Journal, 32(1): 167-183. https://doi.org/10.1111/j.1539-6924.2011.01659.x   [Google Scholar] PMid:21801191
  12. Guikema SD and Goffelt JP (2008). A flexible count data regression model for risk analysis. Risk analysis: An International Journal, 28(1): 213-223. https://doi.org/10.1111/j.1539-6924.2008.01014.x   [Google Scholar] PMid:18304118
  13. Hilbe JM (2011). Negative binomial regression. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511973420   [Google Scholar]
  14. Hoerl AE and Kennard RW (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1): 55-67. https://doi.org/10.1080/00401706.1970.10488634   [Google Scholar]
  15. Kibria BMG (2003). Performance of some new ridge regression estimators. Communications in Statistics-Simulation and Computation, 32(2): 419-435. https://doi.org/10.1081/SAC-120017499   [Google Scholar]
  16. Majid A, Amin M, and Akram MN (2022). On the Liu estimation of Bell regression model in the presence of multicollinearity. Journal of Statistical Computation and Simulation, 92(2): 262-282. https://doi.org/10.1080/00949655.2021.1955886   [Google Scholar]
  17. McLachlan GJ (1997). On the EM algorithm for overdispersed count data. Statistical Methods in Medical Research, 6(1): 76-98. https://doi.org/10.1191/096228097666670466   [Google Scholar] PMid:9185291
  18. Schaefer RL (1986). Alternative estimators in logistic regression when the data are collinear. Journal of Statistical Computation and Simulation, 25(1-2): 75-91. https://doi.org/10.1080/00949658608810925   [Google Scholar]
  19. Sellers KF and Shmueli G (2010). A flexible regression model for count data. The Annals of Applied Statistics, 4(2): 943-961. https://doi.org/10.1214/09-AOAS306   [Google Scholar]
  20. Shmueli G, Minka TP, Kadane JB, Borle S, and Boatwright P (2005). A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution. Journal of the Royal Statistical Society Series C: Applied Statistics, 54(1): 127-142. https://doi.org/10.1111/j.1467-9876.2005.00474.x   [Google Scholar]
  21. Stein CM (1960). Multiple regression contributions to probability and statistics. Essays in Honor of Harold Hoteling, Stanford University Press, Redwood City, USA.   [Google Scholar]