International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 6 (June 2024), Pages: 229-236

----------------------------------------------

 Original Research Paper

Utilizing convolutional neural networks for the classification and preservation of Kalinga textile patterns

 Author(s): 

 Hancy D. Campos 1, 2, *, Meo Vincent Caya 1

 Affiliation(s):

 1School of Electrical, Electronics, and Computer Engineering, Mapua University, Manila, Philippines
 2Department of Computer Engineering, Kalinga State University, Bulanao, Tabuk City, Kalinga, Philippines

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0009-0009-4094-2231

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.06.024

 Abstract

This study introduces a system that utilizes Convolutional Neural Networks (CNN) to categorize Kalinga textiles in a structured manner. The main objective is to systematically identify and name the patterns found in these textiles. The research uses a dataset that includes ten different categories of Kalinga textiles. Metrics such as accuracy, precision, recall, and F1 Score are used to assess the performance of the system. The outcomes demonstrate high precision values between 0.8 and 1.00, showcasing the model's proficiency in precisely classifying and labeling the patterns of Kalinga textiles. Similarly, the recall values, which vary from 0.75 to 1.00 for each category, underscore the model's effectiveness in categorization. These results highlight the system's capability to recognize and categorize Kalinga textiles, with recall values providing strong evidence of its reliability. F1 scores, which consider both precision and recall, range from 0.86 to 0.97 across the categories, indicating the model's accuracy in classification. The introduced technique for image identification shows promise for identifying and categorizing Kalinga textiles, thereby contributing to the preservation and promotion of this cultural heritage. It offers a valuable tool for researchers, enthusiasts, and cultural institutions. Future research could focus on expanding the dataset to improve the model's robustness and exploring its application to other areas of textiles. Continuous enhancements to the model, based on user feedback and technological advancements, will ensure its ongoing effectiveness and relevance.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Convolutional neural networks, Kalinga textiles, Image processing, Raspberry Pi, Image classification

 Article history

 Received 13 November 2023, Received in revised form 1 April 2024, Accepted 12 June 2024

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Campos HD and Caya MV (2024). Utilizing convolutional neural networks for the classification and preservation of Kalinga textile patterns. International Journal of Advanced and Applied Sciences, 11(6): 229-236

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 

 Tables

 Table 1 Table 2 

----------------------------------------------   

 References (31)

  1. Abel LAJ, Oconer TCN, and Cruz JCD (2022). Realtime object detection of pantry objects using yolov5 transfer learning in varying lighting and orientation. In the 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology, IEEE, Meknes, Morocco: 1-7. https://doi.org/10.1109/IRASET52964.2022.9738370   [Google Scholar]
  2. Al Gallenero J and Villaverde J (2023). Identification of durian leaf disease using convolutional neural network. In the 15th International Conference on Computer and Automation Engineering, IEEE, Sydney, Australia: 172-177. https://doi.org/10.1109/ICCAE56788.2023.10111159   [Google Scholar]
  3. Alagao SPL, Alolino JY, Ybañez MKR, Rubio EMD, and Caya MVC (2018). Wireless electric consumption acquisition using image processing. In the IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, IEEE, Baguio City, Philippines: 1-6. https://doi.org/10.1109/HNICEM.2018.8666324   [Google Scholar]
  4. Antolin AMN, Padilla DA, and Reyes JMD (2021). Tooth condition classification for dental charting using convolutional neural network and image processing. In the 6th International Conference on Image, Vision and Computing, IEEE, Qingdao, China: 174-180. https://doi.org/10.1109/ICIVC52351.2021.9527029   [Google Scholar]
  5. Balbin JR, Padilla DA, Caluyo FS, Fausto JC, Hortinela CC, Manlises CO, Bernardino CK, Fiñones EG, and Ventura LT (2016). Sign language word translator using neural networks for the aurally impaired as a tool for communication. In the 6th IEEE International Conference on Control System, Computing and Engineering, IEEE. Penang, Malaysia: 425-429. https://doi.org/10.1109/ICCSCE.2016.7893611   [Google Scholar]
  6. Behera BK (2004). Image-processing in textiles. Textile Progress, 35(2-4): 1-193. https://doi.org/10.1080/00405160408689005   [Google Scholar]
  7. Buenconsejo LT and Linsangan NB (2021). Classification of healthy and unhealthy abaca leaf using a convolutional neural network (CNN). In the IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, IEEE, Manila, Philippines: 1-5. https://doi.org/10.1109/HNICEM54116.2021.9732050   [Google Scholar]
  8. Chen S, Liu M, and Zhang S (2019). Fabric patterns recognition based on weft phase difference. In the Chinese Control Conference, IEEE, Guangzhou, China: 7810-7815. https://doi.org/10.23919/ChiCC.2019.8866550   [Google Scholar] PMCid:PMC6593878
  9. Cruz FRG, Padilla DA, Hortinela IVCC, Bucog KC, Sarto MC, Sia NSA, and Chung WY (2017). Cloud-based application for rice moisture content measurement using image processing technique and perceptron neural network. In the Eighth International Conference on Graphic and Image Processing, SPIE, Tokyo, Japan, 10225: 382-386. https://doi.org/10.1117/12.2266947   [Google Scholar]
  10. Cruz RD, Guevarra S, and Villaverde JF (2023). Leaf classification of costus plant species using convolutional neural network. In the 15th International Conference on Computer and Automation Engineering, IEEE, Sydney, Australia: 309-313. https://doi.org/10.1109/ICCAE56788.2023.10111389   [Google Scholar] PMid:37476967
  11. De Los Reyes AMM, Reyes ACA, Torres JL, Padilla DA, and Villaverde J (2016). Detection of Aedes aegypti mosquito by digital image processing techniques and support vector machine. In the IEEE Region 10 Conference, IEEE, Singapore, Singapore: 2342-2345. https://doi.org/10.1109/TENCON.2016.7848448   [Google Scholar]
  12. Desiderio JMH, Tenorio AJF, and Manlises CO (2022, September). Health classification system of romaine lettuce plants in hydroponic setup using convolutional neural networks (CNN). In the IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET): 1-6. IEEE. Kota Kinabalu, Malaysia. https://doi.org/10.1109/IICAIET55139.2022.9936763   [Google Scholar]
  13. Elabbas AI, Khan KK, and Hortinela CC (2021). Classification of otitis media infections using image processing and convolutional neural network. In the IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, IEEE, Manila, Philippines: 1-6. https://doi.org/10.1109/HNICEM54116.2021.9732013   [Google Scholar]
  14. Hong J and Caya MVC (2022). Development of convolutional neural network model for abaca fiber stripping quality classification system. In the IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, IEEE, Boracay Island, Philippines: 1-5. https://doi.org/10.1109/HNICEM57413.2022.10109508   [Google Scholar]
  15. Huang ML and Fu CC (2018). Applying image processing to the textile grading of fleece based on pilling assessment. Fibers, 6(4): 73. https://doi.org/10.3390/fib6040073   [Google Scholar]
  16. Iqbal Hussain MA, Khan B, Wang Z, and Ding S (2020). Woven fabric pattern recognition and classification based on deep convolutional neural networks. Electronics, 9(6): 1048. https://doi.org/10.3390/electronics9061048   [Google Scholar]
  17. Kelly R (2022). Creating paradise through a palimpsest of textile higher education and community-based research. TEXTILE, 20(1): 39–54. https://doi.org/10.1080/14759756.2021.1955563   [Google Scholar]
  18. Luis VAM, Quiñones MVT, and Yumang AN (2022). Classification of defects in Robusta green coffee beans using YOLO. In the IEEE International Conference on Artificial Intelligence in Engineering and Technology, IEEE, Kota Kinabalu, Malaysia: 1-6. https://doi.org/10.1109/IICAIET55139.2022.9936831   [Google Scholar] PMid:36573370
  19. Manickam H, Chithra P, and Henila M (2019). Fruit classification using image processing techniques fruits classification using image processing techniques. International Journal of Computer Sciences and Engineering, 7(5): 131-135.   [Google Scholar]
  20. Manlises CO, Santos JB, Adviento PA, and Padilla DA (2023). Expiry date character recognition on canned goods using convolutional neural network VGG16 architecture. Textile Progress, 35(2-4): 394-399. https://doi.org/10.1109/ICCAE56788.2023.10111352   [Google Scholar]
  21. Mateo KCH, Navarro LKB, and Manlises CO (2022). Identification of macro-nutrient deficiency in onion leaves (Allium cepa L.) using convolutional neural network (CNN). Textile Progress, 35(2-4): 419-424.   [Google Scholar]
  22. Muhali AS and Linsangan NB (2022). Classification of Lanzones tree leaf diseases using image processing technology and a convolutional neural network (CNN). Textile Progress, 35(2-4): 1-6. https://doi.org/10.1109/IICAIET55139.2022.9936833   [Google Scholar]
  23. Ostia CF, Padilla DA, Reidj F, Cruz G, Galang RJD, Josafat ASM, and Victoria EF (2019). Electronic vision system with personalized calibration of color compensation for people with partial color vision deficiency using Raspberry Pi digital image processing. Textile Progress, 35(2-4): 315-319. https://doi.org/10.1109/ICCAR.2019.8813398   [Google Scholar]
  24. Padilla DA, Pajes RAI, and De Guzman JT (2020). Detection of corn leaf diseases using convolutional neural network with OpenMP implementation. Textile Progress, 35(2-4): 1-6.   [Google Scholar]
  25. Sanchez RB, Esteves JAC, and Linsangan NB (2023). Determination of sugar apple ripeness via image processing using convolutional neural network. Textile Progress, 35(2-4): 333-337.   [Google Scholar]
  26. Santo LAGE, Placido RJD, and Linsangan NB (2022). Potato skin defect detection and classification through image processing. Textile Progress, 35(2-4): 390-400.   [Google Scholar]
  27. Siregar AC and Octariadi BC (2019). Feature selection for sambas traditional fabric "Kain Lunggi" using correlation-based featured selection (CFS). Textile Progress, 35(2-4): 1-5. https://doi.org/10.1109/ICoDSE48700.2019.9092731   [Google Scholar]
  28. Tenorio A, Desiderio J, and Manlises C (2022). Classification of Rincon romaine lettuce using convolutional neural networks (CNN). Textile Progress, 35(2-4): 1-6.   [Google Scholar]
  29. Turkut Ü, Tuncer A, Savran H, and Yılmaz S (2020). An online recommendation system using deep learning for textile products. Textile Progress, 35(2-4): 1-4. https://doi.org/10.1109/HORA49412.2020.9152875   [Google Scholar]
  30. Uy JN and Villaverde JF (2021). A durian variety identifier using canny edge and CNN. Textile Progress, 35(2-4): 293-297.   [Google Scholar]
  31. Wang Y, Jiao Y, and Wang P (2023). Yarn/yarn friction analysis considering the weaving process of textile fabrics: Analytical model and experimental validation. Tribology Letters, 71: 91. https://doi.org/10.1007/s11249-023-01755-y   [Google Scholar]