International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 6 (June 2024), Pages: 215-228

----------------------------------------------

 Review Paper

COVID-19 mRNA vaccine degradation rate prediction using artificial intelligence techniques: A narrative review

 Author(s): 

 Hwai Ing Soon 1, 2, Azian Azamimi Abdullah 1, 3, *, Hiromitsu Nishizaki 2, Mohd Yusoff Mashor 1, Latifah Munirah Kamarudin 1, 4, Zeti-Azura Mohamed-Hussein 5, 6, Zeehaida Mohamed 7, Wei Chern Ang 8, 9

 Affiliation(s):

 1Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, Arau, Malaysia
 2Integrated Graduate School of Medicine, Engineering, and Agricultural Science, University of Yamanashi, Kofu, Japan
 
3Medical Devices and Life Sciences Cluster, Sport Engineering Research Centre, Centre of Excellence, Universiti Malaysia Perlis, Arau, Malaysia
 4Advanced Sensor Technology, Centre of Excellence, Universiti Malaysia Perlis, Arau, Malaysia
 5Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
 6UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
 7Department of Medical Microbiology Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
 8Clinical Research Centre, Hospital Tuanku Fauziah, Ministry of Health Malaysia, Perlis, Malaysia
 9Department of Pharmacy, Hospital Tuanku Fauziah, Ministry of Health Malaysia, Perlis, Malaysia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-5851-7705

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.06.023

 Abstract

As diseases become more common, the use of mRNA (messenger ribonucleic acid) vaccines is becoming more important. These vaccines can be developed quickly and have a low risk of side effects. However, they are sensitive to environmental conditions, which means they need careful storage and transport, creating challenges in distributing them. Testing the stability of an mRNA vaccine requires a lot of work and time, as it needs many lab tests. Artificial Intelligence (AI) offers a new solution by using the genetic information in RNA sequences to predict how quickly these vaccines might break down. This approach helps address potential shortages of vaccines by avoiding some of the challenges with vaccine distribution. The COVID-19 pandemic has greatly sped up the use of AI in this area. This change is significant because using AI to predict and improve the stability of mRNA vaccines was not well explored before the pandemic. This paper reviews recent studies that use AI to study mRNA vaccines during the COVID-19 pandemic. It points out that the main issue with these vaccines is how long they can be stored before they are no longer effective due to their sensitivity to environmental conditions. By looking at these studies, the paper not only shows how AI and vaccine research are coming together but also points out opportunities for more research. The goal of this review is to outline effective methods to improve the use of mRNA vaccines and encourage more scientific research and development in this field. This is an important step in improving how we deal with pandemics.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Artificial intelligence, Degradation rate, mRNA vaccines, Environmental sensitivity, COVID-19 pandemic

 Article history

 Received 21 February 2024, Received in revised form 10 June 2024, Accepted 11 June 2024

 Acknowledgment 

The authors gratefully acknowledge funding from the Fundamental Research Grant Scheme (FRGS) funded by the Ministry of Higher Education (MOHE), Malaysia. FRGS/1/2021/TKO/UNIMAP/02/65.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Soon HI, Abdullah AA, Nishizaki H, Mashor MY, Kamarudin LM, Mohamed-Hussein ZA, Mohamed Z, and Ang WC (2024). COVID-19 mRNA vaccine degradation rate prediction using artificial intelligence techniques: A narrative review. International Journal of Advanced and Applied Sciences, 11(6): 215-228

 Permanent Link to this page

 Figures

 Fig. 1 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5

----------------------------------------------   

 References (90)

  1. Abou Bakr EY (2023). The urgent literary response to the COVID-19 pandemic in David Hare's. Beni-Suef University International Journal of Humanities and Social Sciences, 5(1): 96-128. https://doi.org/10.21608/buijhs.2023.83462.1077   [Google Scholar]
  2. Abu-Raddad LJ, Chemaitelly H, and Butt AA (2021). Effectiveness of the BNT162b2 COVID-19 vaccine against the B.1.1.7 and B.1.351 variants. New England Journal of Medicine, 385(2): 187-189. https://doi.org/10.1056/NEJMc2104974   [Google Scholar] PMid:33951357 PMCid:PMC8117967
  3. Alassafi MO, Jarrah M, and Alotaibi R (2022). Time series predicting of COVID-19 based on deep learning. Neurocomputing, 468: 335-344. https://doi.org/10.1016/j.neucom.2021.10.035   [Google Scholar] PMid:34690432 PMCid:PMC8523546
  4. Almotairi KH, Hussein AM, Abualigah L, Abujayyab SK, Mahmoud EH, Ghanem BO, and Gandomi AH (2023). Impact of artificial intelligence on COVID-19 pandemic: A survey of image processing, tracking of disease, prediction of outcomes, and computational medicine. Big Data and Cognitive Computing, 7(1): 11. https://doi.org/10.3390/bdcc7010011   [Google Scholar]
  5. Arshadi AK, Webb J, Salem M, Cruz E, Calad-Thomson S, Ghadirian N, Collins J, Diez-Cecilia E, Kelly B, Goodarzi H, and Yuan JS (2020). Artificial intelligence for COVID-19 drug discovery and vaccine development. Frontiers in Artificial Intelligence, 3: 65. https://doi.org/10.3389/frai.2020.00065   [Google Scholar] PMid:33733182 PMCid:PMC7861281
  6. Bai G, He S, Liu K, and Zhao J (2023). Bidirectional sentence ordering with interactive decoding. ACM Transactions on Asian and Low-Resource Language Information Processing, 22(2): 45. https://doi.org/10.1145/3561510   [Google Scholar]
  7. Baldwin DR, Gustafson J, Pickup L, Arteta C, Novotny P, Declerck J, Kadir T, Figueiras C, Sterba A, Exell A, and Potesil V et al. (2020). External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax, 75(4): 306-312. https://doi.org/10.1136/thoraxjnl-2019-214104   [Google Scholar] PMid:32139611 PMCid:PMC7231457
  8. Bernal JL, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G, and Myers R et al. (2021). Effectiveness of COVID-19 vaccines against the B.1.617.2 (Delta) variant. The New England Journal of Medicine, 385: 585-94. https://doi.org/10.1056/NEJMoa2108891   [Google Scholar] PMid:34289274 PMCid:PMC8314739
  9. Bhardwaj A, Kishore S, and Pandey DK (2022). Artificial intelligence in biological sciences. Life, 12(9): 1430. https://doi.org/10.3390/life12091430   [Google Scholar] PMid:36143468 PMCid:PMC9505413
  10. Bian L, Gao Q, Gao F, Wang Q, He Q, Wu X, Mao Q, Xu M, and Liang Z et al. (2021). Impact of the Delta variant on vaccine efficacy and response strategies. Expert Review of Vaccines, 20(10): 1201-1209. https://doi.org/10.1080/14760584.2021.1976153   [Google Scholar] PMid:34488546 PMCid:PMC8442750
  11. Bogard G, Barthelemy J, Hantute-Ghesquier A, Sencio V, Brito-Rodrigues P, Séron K, Robil C, Flourens A, Pinet F, Eberlé D and Trottein F et al. (2023). SARS-CoV-2 infection induces persistent adipose tissue damage in aged golden Syrian hamsters. Cell Death and Disease, 14: 75. https://doi.org/10.1038/s41419-023-05574-w   [Google Scholar] PMid:36725844 PMCid:PMC9891765
  12. Carreño JM, Alshammary H, Tcheou J, Singh G, Raskin AJ, Kawabata H, Sominsky LA, Clark JJ, Adelsberg DC, Bielak DA, and Gonzalez-Reiche AS et al. (2022). Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature, 602(7898): 682-688. https://doi.org/10.1038/d41586-021-03846-z   [Google Scholar] PMid:35016197
  13. Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR, Malek JA, Coyle P, Ayoub HH, Al Kanaani Z, and Al Kuwari E et al. (2021). mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nature Medicine, 27(9): 1614-1621. https://doi.org/10.1038/s41591-021-01446-y   [Google Scholar] PMid:34244681
  14. Cheng J, Zhao J, Xu W, Zhang T, Xue F, and Liu S (2023). Semantic similarity-based mobile application isomorphic graphical user interface identification. Mathematics, 11(3): 527. https://doi.org/10.3390/math11030527   [Google Scholar]
  15. Chowdhury SD and Oommen AM (2020). Epidemiology of COVID-19. Journal of Digestive Endoscopy, 11(1): 03-07. https://doi.org/10.1055/s-0040-1712187   [Google Scholar] PMCid:PMC7364648
  16. Chung H, He S, Nasreen S, Sundaram ME, Buchan SA, Wilson SE, Chen B, Calzavara A, Fell DB, Austin PC, and Wilson K et al. (2021). Effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe COVID-19 outcomes in Ontario, Canada: Test negative design study. BMJ, 374: n1943. https://doi.org/10.1136/bmj.n1943   [Google Scholar] PMid:34417165 PMCid:PMC8377789
  17. Chze ON and Abdullah AA (2022). COVID-19 mRNA vaccine degradation prediction by using deep learning algorithms. In the International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, IEEE, Sakheer, Bahrain: 444-450. https://doi.org/10.1109/3ICT56508.2022.9990617   [Google Scholar]
  18. Crommelin DJ, Anchordoquy TJ, Volkin DB, Jiskoot W, and Mastrobattista E (2021). Addressing the cold reality of mRNA vaccine stability. Journal of Pharmaceutical Sciences, 110(3): 997-1001. https://doi.org/10.1016/j.xphs.2020.12.006   [Google Scholar] PMid:33321139 PMCid:PMC7834447
  19. Dhawan M, Saied AA, Mitra S, Alhumaydhi FA, Emran TB, and Wilairatana P (2022). Omicron variant (B.1.1.529) and its sublineages: What do we know so far amid the emergence of recombinant variants of SARS-CoV-2? Biomedicine and Pharmacotherapy, 154: 113522. https://doi.org/10.1016/j.biopha.2022.113522   [Google Scholar] PMid:36030585 PMCid:PMC9376347
  20. Ding F, Cocco S, Raj S, Manosas M, Nguyen TTT, Spiering MM, Bensimon D, Allemand JF, and Croquette V (2022). Displacement and dissociation of oligonucleotides during DNA hairpin closure under strain. Nucleic Acids Research, 50(21): 12082-12093. https://doi.org/10.1093/nar/gkac1113   [Google Scholar] PMid:36478056 PMCid:PMC9757040
  21. Dumpa N, Goel K, Guo Y, McFall H, Pillai AR, Shukla A, Repka MA, and Murthy SN (2019). Stability of vaccines. AAPS Pharmscitech, 20: 42. https://doi.org/10.1208/s12249-018-1254-2   [Google Scholar] PMid:30610415
  22. Dyer O (2023). COVID-19: China stops counting cases as models predict a million or more deaths. BMJ, 380: p2. https://doi.org/10.1136/bmj.p2   [Google Scholar] PMid:36596574
  23. El-Sappagh S, Alonso JM, Islam SR, Sultan AM, and Kwak KS (2021). A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease. Scientific Reports, 11: 2660. https://doi.org/10.1038/s41598-021-82098-3   [Google Scholar] PMid:33514817 PMCid:PMC7846613
  24. Flacco ME, Soldato G, Acuti Martellucci C, Carota R, Di Luzio R, Caponetti A, and Manzoli L (2021). Interim estimates of COVID-19 vaccine effectiveness in a mass vaccination setting: Data from an Italian Province. Vaccines, 9(6): 628. https://doi.org/10.3390/vaccines9060628   [Google Scholar] PMid:34200538 PMCid:PMC8227269
  25. Gao X, Xia Y, Liu X, Xu Y, Lu P, Liu J, and Liang G (2023). A perspective on SARS-CoV-2 virus-like particles vaccines. International Immunopharmacology, 115: 109650. https://doi.org/10.1016/j.intimp.2022.109650   [Google Scholar] PMid:36649673 PMCid:PMC9832101
  26. Gao Y, Cai C, Grifoni A, Müller TR, Niessl J, Olofsson A, Humbert M, Hansson L, Österborg A, Bergman P, and Chen P et al. (2022). Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nature Medicine, 28(3): 472-476. https://doi.org/10.1038/s41591-022-01700-x   [Google Scholar] PMid:35042228 PMCid:PMC8938268
  27. Giełzak J, Dejak B, Sokołowski J, and Bociong K (2023). Changes in strength parameters of composite cements as affected by storage temperature—A review of the literature. Coatings, 13(2): 244. https://doi.org/10.3390/coatings13020244   [Google Scholar]
  28. Giridhar A and Sampathila N (2022). Application of artificial intelligence to predict the degradation of potential mRNA vaccines developed to treat SARS-CoV-2. In the International Conference on Machine Learning and Big Data Analytics, Springer International Publishing, Patna, India: 85-94. https://doi.org/10.1007/978-3-030-82469-3_8   [Google Scholar]
  29. Grau S, Ferrández O, Martín-García E, and Maldonado R (2021). Accidental interruption of the cold chain for the preservation of the Moderna COVID-19 vaccine. Vaccines, 9(5): 512. https://doi.org/10.3390/vaccines9050512   [Google Scholar] PMid:34067511 PMCid:PMC8155917
  30. Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, Brooks N, Smaja M, Mircus G, Pan K, and Southern J et al. (2021). Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. The Lancet, 397(10287): 1819-1829. https://doi.org/10.1016/S0140-6736(21)00947-8   [Google Scholar] PMid:33964222
  31. Hassoun S, Jefferson F, Shi X, Stucky B, Wang J, and Rosa Jr E (2021). Artificial intelligence for biology. Integrative and Comparative Biology, 61(6): 2267-2275. https://doi.org/10.1093/icb/icab188   [Google Scholar] PMid:34448841
  32. Havers FP, Pham H, Taylor CA, Whitaker M, Patel K, Anglin O, Kambhampati AK, Milucky J, Zell E, Moline HL, and Chai SJ et al. (2022). COVID-19-associated hospitalizations among vaccinated and unvaccinated adults 18 years or older in 13 US States, January 2021 to April 2022. JAMA Internal Medicine, 182(10): 1071-1081. https://doi.org/10.1001/jamainternmed.2022.4299   [Google Scholar] PMid:36074486 PMCid:PMC9459904
  33. Hayawi K, Shahriar S, Serhani MA, Alashwal H, and Masud MM (2021). Vaccine versus variants (3Vs): Are the COVID-19 vaccines effective against the variants? A systematic review. Vaccines, 9(11): 1305. https://doi.org/10.3390/vaccines9111305   [Google Scholar] PMid:34835238 PMCid:PMC8622454
  34. He S, Gao B, Sabnis R, and Sun Q (2023). RNAdegformer: Accurate prediction of mRNA degradation at nucleotide resolution with deep learning. Briefings in Bioinformatics, 24(1): 1-14. https://doi.org/10.1093/bib/bbac581   [Google Scholar] PMid:36633966 PMCid:PMC9851316
  35. Imran SA, Islam MT, Shahnaz C, Islam MT, Imam OT, and Haque M (2020). COVID-19 mRNA vaccine degradation prediction using regularized LSTM model. In the IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), IEEE, Bhubaneswar, India: 328-331. https://doi.org/10.1109/WIECON-ECE52138.2020.9398044   [Google Scholar]
  36. Ing SH, Abdullah AA, and Kanaya S (2021b). Development of COVID-19 mRNA vaccine degradation prediction system. In the International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), IEEE, Zallaq, Bahrain: 449-454. https://doi.org/10.1109/3ICT53449.2021.9582052   [Google Scholar]
  37. Ing SH, Abdullah AA, Harun NH, and Kanaya S (2021a). COVID-19 mRNA vaccine degradation prediction using LR and LGBM algorithms. Journal of Physics: Conference Series, 1997(1): 012005. https://doi.org/10.1088/1742-6596/1997/1/012005   [Google Scholar]
  38. Ing SH, Abdullah AA, Mashor MY, Mohamed-Hussein ZA, Mohamed Z, and Ang WC (2022). Exploration of hybrid deep learning algorithms for COVID-19 mRNA vaccine degradation prediction system. International Journal of Advances in Intelligent Informatics, 8(3): 404-416. https://doi.org/10.26555/ijain.v8i3.950   [Google Scholar]
  39. Ioannou GN, Locke ER, Green PK, and Berry K (2022). Comparison of Moderna versus Pfizer-BioNTech COVID-19 vaccine outcomes: A target trial emulation study in the US Veterans Affairs healthcare system. EClinicalMedicine, 45: 101326. https://doi.org/10.1016/j.eclinm.2022.101326   [Google Scholar] PMid:35261970 PMCid:PMC8896984
  40. Jiang X, Coffee M, Bari A, Wang J, Jiang X, Huang J, Shi J, Dai J, Cai J, Zhang T, and Wu Z et al. (2020). Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Computers, Materials and Continua, 63(1): 537-551. https://doi.org/10.32604/cmc.2020.010691   [Google Scholar]
  41. Jolly P, Estrela P, and Ladomery M (2016). Oligonucleotide-based systems: DNA, microRNAs, DNA/RNA aptamers. Essays in Biochemistry, 60(1): 27-35. https://doi.org/10.1042/EBC20150004   [Google Scholar] PMid:27365033 PMCid:PMC4986462
  42. Kauffmann AD, Kennedy SD, Moss WN, Kierzek E, Kierzek R, and Turner DH (2022). Nuclear magnetic resonance reveals a two hairpin equilibrium near the 3′-splice site of influenza A segment 7 mRNA that can be shifted by oligonucleotides. RNA Society, 28(4): 508-522. https://doi.org/10.1261/rna.078951.121   [Google Scholar] PMid:34983822 PMCid:PMC8925974
  43. Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt CJ, Cerikan B, and Lu JM et al. (2020). Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 588(7838): 498-502. https://doi.org/10.1038/s41586-020-2665-2   [Google Scholar] PMid:32805734 PMCid:PMC7116492
  44. Kim JH, Kim SH, Kim BJ, and Lee HM (2023). Effects of oxygen-containing functional groups on the electrochemical performance of activated carbon for EDLCs. Nanomaterials, 13(2): 262. https://doi.org/10.3390/nano13020262   [Google Scholar] PMid:36678013 PMCid:PMC9861518
  45. Knabel SJ and Hargittai I (2021). Paradigms and paradoxes: Decoding the "genetic code." Structural Chemistry, 32(1): 9-10. https://doi.org/10.1007/s11224-020-01653-2   [Google Scholar]
  46. Krishna UV, Premjith B, and Soman KP (2022). A comparative study of pre-trained gene embeddings for COVID-19 mRNA vaccine degradation prediction. In: Giri D, Choo KKR, Ponnusamy S, Meng W, Akleylek S, and Maity SP (Eds.), Proceedings of the seventh international conference on mathematics and computing: Advances in intelligent systems and computing: 302-308. Volume 1412, Springer, Singapore, Singapore. https://doi.org/10.1007/978-981-16-6890-6_22   [Google Scholar]
  47. Lakhia R, Mishra A, and Patel V (2019). Manipulation of renal gene expression using oligonucleotides. Methods in Cell Biology, 154: 109-120. https://doi.org/10.1016/bs.mcb.2019.05.006   [Google Scholar] PMid:31493813 PMCid:PMC7992197
  48. Li Y and Breaker RR (1999). Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2‘-hydroxyl group. Journal of the American Chemical Society, 121(23): 5364-5372. https://doi.org/10.1021/ja990592p   [Google Scholar]
  49. Liu J, Chandrashekar A, Sellers D, Barrett J, Jacob-Dolan C, Lifton M, McMahan K, Sciacca M, VanWyk H, Wu C, and Yu J et al. (2022). Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron. Nature, 603(7901): 493-496. https://doi.org/10.1038/s41586-022-04465-y   [Google Scholar] PMid:35102312 PMCid:PMC8930761
  50. Loh PS and Patzel V (2023). Non-covalent linkage of helper functions to dumbbell-shaped DNA vectors for targeted delivery. Pharmaceutics, 15(2): 370. https://doi.org/10.3390/pharmaceutics15020370   [Google Scholar] PMid:36839697 PMCid:PMC9962178
  51. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, Padayachee SD, Dheda K, Barnabas SL, Bhorat QE, and Briner C et al. (2021). Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B.1.351 variant. New England Journal of Medicine, 384(20): 1885-1898. https://doi.org/10.1056/NEJMoa2102214   [Google Scholar] PMid:33725432 PMCid:PMC7993410
  52. Majhi B (2023). A modified artificial neural network (ANN)-based time series prediction of COVID-19 cases from multi-country data. Journal of the Institution of Engineers (India): Series B, 104(2): 335-350. https://doi.org/10.1007/s40031-022-00849-w   [Google Scholar] PMCid:PMC9841947
  53. Marot S, Bocar Fofana D, Flandre P, Malet I, Zafilaza K, Leducq V, Vivien D, Mrabet S, Poignon C, Calvez V, and Morand-Joubert L et al. (2022). SARS-CoV-2 neutralizing responses in various populations, at the time of SARS-CoV-2 variant virus emergence: Evaluation of two surrogate neutralization assays in front of whole virus neutralization test. Life, 12(12): 2064. https://doi.org/10.3390/life12122064   [Google Scholar] PMid:36556429 PMCid:PMC9782962
  54. Martins JE, D’Alimonte D, Simões J, Sousa S, Esteves E, Rosa N, Correia MJ, Simões M, and Barros M (2022). MODeLING.Vis: A graphical user interface toolbox developed for machine learning and pattern recognition of biomolecular data. Symmetry, 15(1): 42. https://doi.org/10.3390/sym15010042   [Google Scholar]
  55. Mascellino MT, Di Timoteo F, De Angelis M, and Oliva A (2021). Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety. Infection and Drug Resistance, 14: 3459-3476. https://doi.org/10.2147/IDR.S315727   [Google Scholar] PMid:34511939 PMCid:PMC8418359
  56. Msemburi W, Karlinsky A, Knutson V, Aleshin-Guendel S, Chatterji S, and Wakefield J (2023). The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature, 613(7942): 130-137. https://doi.org/10.1038/s41586-022-05522-2   [Google Scholar] PMid:36517599 PMCid:PMC9812776
  57. Muik A, Wallisch AK, Sänger B, Swanson KA, Mühl J, Chen W, Cai H, Maurus D, Sarkar R, Türeci Ö, and Dormitzer PR et al. (2021). Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine–elicited human sera. Science, 371(6534): 1152-1153. https://doi.org/10.1126/science.abg6105   [Google Scholar] PMid:33514629 PMCid:PMC7971771
  58. Muneer A, Fati SM, Akbar NA, Agustriawan D, and Wahyudi ST (2022). iVaccine-Deep: Prediction of COVID-19 mRNA vaccine degradation using deep learning. Journal of King Saud University-Computer and Information Sciences, 34(9): 7419-7432. https://doi.org/10.1016/j.jksuci.2021.10.001   [Google Scholar] PMid:38620874 PMCid:PMC8513509
  59. Nemet I, Kliker L, Lustig Y, Zuckerman N, Erster O, Cohen C, Kreiss Y, Alroy-Preis S, Regev-Yochay G, Mendelson E, and Mandelboim M et al. (2022). Third BNT162b2 vaccination neutralization of SARS-CoV-2 Omicron infection. New England Journal of Medicine, 386(5): 492-494. https://doi.org/10.1056/NEJMc2119358   [Google Scholar] PMid:34965337 PMCid:PMC8823651
  60. Nguyen NH, Trotel-Aziz P, Villaume S, Rabenoelina F, Schwarzenberg A, Nguema-Ona E, Clément C, Baillieul F, and Aziz A (2020). Bacillus subtilis and Pseudomonas fluorescens trigger common and distinct systemic immune responses in Arabidopsis thaliana depending on the pathogen lifestyle. Vaccines, 8(3): 503. https://doi.org/10.3390/vaccines8030503   [Google Scholar] PMid:32899695 PMCid:PMC7563191
  61. Nikam R and Gromiha MM (2019). Seq2Feature: A comprehensive web-based feature extraction tool. Bioinformatics, 35(22): 4797-4799. https://doi.org/10.1093/bioinformatics/btz432   [Google Scholar] PMid:31135038
  62. Qaid TS, Mazaar H, Alqahtani MS, Raweh AA, and Alakwaa W (2021). Deep sequence modelling for predicting COVID-19 mRNA vaccine degradation. PeerJ Computer Science, 7: e597. https://doi.org/10.7717/peerj-cs.597   [Google Scholar] PMid:34239977 PMCid:PMC8237341
  63. Rabaan AA, Al-Ahmed SH, Albayat H, Alwarthan S, Alhajri M, Najim MA, AlShehail BM, Al-Adsani W, Alghadeer A, Abduljabbar WA, and Alotaibi N et al. (2023). Variants of SARS-CoV-2: Influences on the vaccines’ effectiveness and possible strategies to overcome their consequences. Medicina, 59(3): 507. https://doi.org/10.3390/medicina59030507   [Google Scholar] PMid:36984508 PMCid:PMC10051174
  64. Ramalingam S, Thamizhvel R, Sudagar S, and Silambarasan R (2023). Production of third generation bio-fuel through thermal cracking process by utilizing COVID-19 plastic wastes. Materials Today: Proceedings, 72: 1618-1623. https://doi.org/10.1016/j.matpr.2022.09.430   [Google Scholar] PMid:36213622 PMCid:PMC9529355
  65. Ribal J, Marques-Perez I, and Segura M (2022). A farm compensation model to reduce the risk of pest spreading: An application for Xylella fastidiosa in Mediterranean agriculture. NJAS: Impact in Agricultural and Life Sciences, 94(1): 112-136. https://doi.org/10.1080/27685241.2022.2108732   [Google Scholar]
  66. Santos AG, da Rocha GO, and de Andrade JB (2019). Occurrence of the potent mutagens 2-nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles. Scientific Reports, 9: 1. https://doi.org/10.1038/s41598-018-37186-2   [Google Scholar] PMid:30626917 PMCid:PMC6327027
  67. Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, Lalloo U, Masilela MS, Moodley D, Hanley S, and Fouche L et al. (2021). Efficacy of NVX-CoV2373 COVID-19 vaccine against the B.1.351 variant. New England Journal of Medicine, 384(20): 1899-1909. https://doi.org/10.1056/NEJMoa2103055   [Google Scholar] PMid:33951374 PMCid:PMC8091623
  68. Singhal A (2020). Predicting hydroxyl mediated nucleophilic degradation and molecular stability of RNA sequences through the application of deep learning methods. Arxiv Preprint Arxiv:2011.05136. https://doi.org/10.48550/arXiv.2011.05136   [Google Scholar]
  69. Skowronski DM, Setayeshgar S, Zou M, Prystajecky N, Tyson JR, Galanis E, Naus M, Patrick DM, Sbihi H, El Adam S, and Henry B et al. (2022). Single-dose mRNA vaccine effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including alpha and gamma variants: A test-negative design in adults 70 years and older in British Columbia, Canada. Clinical Infectious Diseases, 74(7): 1158-1165. https://doi.org/10.1093/cid/ciab616   [Google Scholar] PMid:34244723 PMCid:PMC8406884
  70. Stenberg JA, Sundh I, Becher PG, Björkman C, Dubey M, Egan PA, Friberg H, Gil JF, Jensen DF, Jonsson M, and Karlsson M et al. (2021). When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science, 94(3): 665-676. https://doi.org/10.1007/s10340-021-01354-7   [Google Scholar]
  71. Štorkánová H, Oreská S, Špiritović M, Heřmánková B, Bubová K, Komarc M, Pavelka K, Vencovský J, Distler JH, Šenolt L, and Bečvář R et al. (2021). Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: A cross-sectional and longitudinal study. Scientific Reports, 11: 1. https://doi.org/10.1038/s41598-020-79139-8   [Google Scholar] PMid:33414495 PMCid:PMC7791137
  72. Sulayman N (2023). Deep learning-based predictive model of mRNA vaccine deterioration: An analysis of the Stanford COVID-19 mRNA vaccine dataset. Baghdad Science Journal, 20(4(SI)): 1451-1458. https://doi.org/10.21123/bsj.2023.8504   [Google Scholar]
  73. Tiwari M, Pati D, Mohapatra R, Sahu BB, and Singh P (2022). The impact of microbes in plant immunity and priming induced inheritance: A sustainable approach for crop protection. Plant Stress, 4: 100072. https://doi.org/10.1016/j.stress.2022.100072   [Google Scholar]
  74. Tofarides AG, Christaki E, Milionis H, and Nikolopoulos GK (2022). Effect of vaccination against SARS-CoV-2 on long COVID-19: A narrative review. Life, 12(12): 2057. https://doi.org/10.3390/life12122057   [Google Scholar] PMid:36556422 PMCid:PMC9785763
  75. Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, Zhou D, Ginn HM, Selvaraj M, Liu C, Mentzer AJ, Supasa P, Duyvesteyn HM, and Das R et al. (2022). Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell, 185(14): 2422-2433. https://doi.org/10.1016/j.cell.2022.06.005   [Google Scholar] PMid:35772405 PMCid:PMC9181312
  76. Uddin MN Roni MA (2021). Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines, 9(9): 1033. https://doi.org/10.3390/vaccines9091033   [Google Scholar] PMid:34579270 PMCid:PMC8473088
  77. Vena A, Traman L, Bavastro M, Limongelli A, Dentone C, Magnè F, Giacobbe DR, Mikulska M, Taramasso L, Di Biagio A, and Bassetti M (2022). Early clinical experience with molnupiravir for mild to moderate breakthrough COVID-19 among fully vaccinated patients at risk for disease progression. Vaccines, 10(7): 1141. https://doi.org/10.3390/vaccines10071141   [Google Scholar] PMid:35891305 PMCid:PMC9318911
  78. Vinuesa R, Azizpour H, Leite I, Balaam M, Dignum V, Domisch S, Felländer A, Langhans SD, Tegmark M, and Fuso Nerini F (2020). The role of artificial intelligence in achieving the sustainable development goals. Nature Communications, 11: 233. https://doi.org/10.1038/s41467-019-14108-y   [Google Scholar] PMid:31932590 PMCid:PMC6957485
  79. Vodilovska V, Gievska S, and Ivanoska I (2023). Hyperparameter optimization of graph neural networks for mRNA degradation prediction. In the 46th MIPRO ICT and Electronics Convention, IEEE, Opatija, Croatia: 423-428. https://doi.org/10.23919/MIPRO57284.2023.10159737   [Google Scholar]
  80. Wagemans J, Holtappels D, Vainio E, Rabiey M, Marzachì C, Herrero S, Ravanbakhsh M, Tebbe CC, Ogliastro M, Ayllón MA, and Turina M (2022). Going viral: Virus-based biological control agents for plant protection. Annual Review of Phytopathology, 60: 21-42. https://doi.org/10.1146/annurev-phyto-021621-114208   [Google Scholar] PMid:35300520
  81. Wang H, Paulson KR, Pease SA, Watson S, Comfort H, Zheng P, Aravkin AY, Bisignano C, Barber RM, Alam T, and Fuller JE et al. (2022). Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–21. The Lancet, 399(10334): 1513-1536. https://doi.org/10.1016/S0140-6736(21)02796-3   [Google Scholar]
  82. Wang P, Casner RG, Nair MS, Wang M, Yu J, Cerutti G, Liu L, Kwong PD, Huang Y, Shapiro L, and Ho DD (2021). Increased resistance of SARS-CoV-2 variant P. 1 to antibody neutralization. Cell Host and Microbe, 29(5): 747-751. https://doi.org/10.1016/j.chom.2021.04.007   [Google Scholar] PMid:33887205 PMCid:PMC8053237
  83. Wang Y (2021). Predicting the degradation of COVID-19 mRNA vaccine with graph convolutional networks. In the 6th International Conference on Machine Learning Technologies, Association for Computing Machinery, Jeju Island, Republic of Korea: 111-116. https://doi.org/10.1145/3468891.3468907   [Google Scholar]
  84. Wayment-Steele HK, Kim DS, Choe CA, Nicol JJ, Wellington-Oguri R, Watkins AM, Parra Sperberg RA, Huang PS, Participants E, and Das R (2021). Theoretical basis for stabilizing messenger RNA through secondary structure design. Nucleic Acids Research, 49(18): 10604-10617. https://doi.org/10.1093/nar/gkab764   [Google Scholar] PMid:34520542 PMCid:PMC8499941
  85. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, and Yuan ML et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798): 265-269. https://doi.org/10.1038/s41586-020-2008-3   [Google Scholar] PMid:32015508 PMCid:PMC7094943
  86. Yamada T and Takaoka A (2023). Innate immune recognition against SARS-CoV-2. Inflammation and Regeneration, 43: 7. https://doi.org/10.1186/s41232-023-00259-5   [Google Scholar] PMid:36703213 PMCid:PMC9879261
  87. Yit TW, Hassan R, Zakaria NH, Kasim S, Moi SH, Khairuddin AR, and Amnur H (2023). Transformer in mRNA degradation prediction. International Journal on Informatics Visualization, 7(2): 588-599. https://doi.org/10.30630/joiv.7.2.1165   [Google Scholar]
  88. Zhang C, Maruggi G, Shan H, and Li J (2019). Advances in mRNA vaccines for infectious diseases. Frontiers in Immunology, 10: 429065. https://doi.org/10.3389/fimmu.2019.00594   [Google Scholar] PMid:30972078 PMCid:PMC6446947
  89. Zhang J, Tan L, Tao X, Pham T, and Chen B (2020a). Relational intelligence recognition in online social networks: A survey. Computer Science Review, 35: 100221. https://doi.org/10.1016/j.cosrev.2019.100221   [Google Scholar]
  90. Zhang LK, Sun Y, Zeng H, Wang Q, Jiang X, Shang WJ, Wu Y, Li S, Zhang YL, Hao ZN, and Chen H et al. (2020b). Calcium channel blocker amlodipine besylate therapy is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discovery, 6: 96. https://doi.org/10.1038/s41421-020-00235-0   [Google Scholar] PMid:33349633 PMCid:PMC7752915