Volume 11, Issue 6 (June 2024), Pages: 215-228
----------------------------------------------
Review Paper
COVID-19 mRNA vaccine degradation rate prediction using artificial intelligence techniques: A narrative review
Author(s):
Hwai Ing Soon 1, 2, Azian Azamimi Abdullah 1, 3, *, Hiromitsu Nishizaki 2, Mohd Yusoff Mashor 1, Latifah Munirah Kamarudin 1, 4, Zeti-Azura Mohamed-Hussein 5, 6, Zeehaida Mohamed 7, Wei Chern Ang 8, 9
Affiliation(s):
1Faculty of Electronic Engineering and Technology, Universiti Malaysia Perlis, Arau, Malaysia
2Integrated Graduate School of Medicine, Engineering, and Agricultural Science, University of Yamanashi, Kofu, Japan
3Medical Devices and Life Sciences Cluster, Sport Engineering Research Centre, Centre of Excellence, Universiti Malaysia Perlis, Arau, Malaysia
4Advanced Sensor Technology, Centre of Excellence, Universiti Malaysia Perlis, Arau, Malaysia
5Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
6UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
7Department of Medical Microbiology Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
8Clinical Research Centre, Hospital Tuanku Fauziah, Ministry of Health Malaysia, Perlis, Malaysia
9Department of Pharmacy, Hospital Tuanku Fauziah, Ministry of Health Malaysia, Perlis, Malaysia
Full text
Full Text - PDF
* Corresponding Author.
Corresponding author's ORCID profile: https://orcid.org/0000-0001-5851-7705
Digital Object Identifier (DOI)
https://doi.org/10.21833/ijaas.2024.06.023
Abstract
As diseases become more common, the use of mRNA (messenger ribonucleic acid) vaccines is becoming more important. These vaccines can be developed quickly and have a low risk of side effects. However, they are sensitive to environmental conditions, which means they need careful storage and transport, creating challenges in distributing them. Testing the stability of an mRNA vaccine requires a lot of work and time, as it needs many lab tests. Artificial Intelligence (AI) offers a new solution by using the genetic information in RNA sequences to predict how quickly these vaccines might break down. This approach helps address potential shortages of vaccines by avoiding some of the challenges with vaccine distribution. The COVID-19 pandemic has greatly sped up the use of AI in this area. This change is significant because using AI to predict and improve the stability of mRNA vaccines was not well explored before the pandemic. This paper reviews recent studies that use AI to study mRNA vaccines during the COVID-19 pandemic. It points out that the main issue with these vaccines is how long they can be stored before they are no longer effective due to their sensitivity to environmental conditions. By looking at these studies, the paper not only shows how AI and vaccine research are coming together but also points out opportunities for more research. The goal of this review is to outline effective methods to improve the use of mRNA vaccines and encourage more scientific research and development in this field. This is an important step in improving how we deal with pandemics.
© 2024 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords
Artificial intelligence, Degradation rate, mRNA vaccines, Environmental sensitivity, COVID-19 pandemic
Article history
Received 21 February 2024, Received in revised form 10 June 2024, Accepted 11 June 2024
Acknowledgment
The authors gratefully acknowledge funding from the Fundamental Research Grant Scheme (FRGS) funded by the Ministry of Higher Education (MOHE), Malaysia. FRGS/1/2021/TKO/UNIMAP/02/65.
Compliance with ethical standards
Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Citation:
Soon HI, Abdullah AA, Nishizaki H, Mashor MY, Kamarudin LM, Mohamed-Hussein ZA, Mohamed Z, and Ang WC (2024). COVID-19 mRNA vaccine degradation rate prediction using artificial intelligence techniques: A narrative review. International Journal of Advanced and Applied Sciences, 11(6): 215-228
Permanent Link to this page
Figures
Fig. 1
Tables
Table 1 Table 2 Table 3 Table 4 Table 5
----------------------------------------------
References (90)
- Abou Bakr EY (2023). The urgent literary response to the COVID-19 pandemic in David Hare's. Beni-Suef University International Journal of Humanities and Social Sciences, 5(1): 96-128. https://doi.org/10.21608/buijhs.2023.83462.1077 [Google Scholar]
- Abu-Raddad LJ, Chemaitelly H, and Butt AA (2021). Effectiveness of the BNT162b2 COVID-19 vaccine against the B.1.1.7 and B.1.351 variants. New England Journal of Medicine, 385(2): 187-189. https://doi.org/10.1056/NEJMc2104974 [Google Scholar] PMid:33951357 PMCid:PMC8117967
- Alassafi MO, Jarrah M, and Alotaibi R (2022). Time series predicting of COVID-19 based on deep learning. Neurocomputing, 468: 335-344. https://doi.org/10.1016/j.neucom.2021.10.035 [Google Scholar] PMid:34690432 PMCid:PMC8523546
- Almotairi KH, Hussein AM, Abualigah L, Abujayyab SK, Mahmoud EH, Ghanem BO, and Gandomi AH (2023). Impact of artificial intelligence on COVID-19 pandemic: A survey of image processing, tracking of disease, prediction of outcomes, and computational medicine. Big Data and Cognitive Computing, 7(1): 11. https://doi.org/10.3390/bdcc7010011 [Google Scholar]
- Arshadi AK, Webb J, Salem M, Cruz E, Calad-Thomson S, Ghadirian N, Collins J, Diez-Cecilia E, Kelly B, Goodarzi H, and Yuan JS (2020). Artificial intelligence for COVID-19 drug discovery and vaccine development. Frontiers in Artificial Intelligence, 3: 65. https://doi.org/10.3389/frai.2020.00065 [Google Scholar] PMid:33733182 PMCid:PMC7861281
- Bai G, He S, Liu K, and Zhao J (2023). Bidirectional sentence ordering with interactive decoding. ACM Transactions on Asian and Low-Resource Language Information Processing, 22(2): 45. https://doi.org/10.1145/3561510 [Google Scholar]
- Baldwin DR, Gustafson J, Pickup L, Arteta C, Novotny P, Declerck J, Kadir T, Figueiras C, Sterba A, Exell A, and Potesil V et al. (2020). External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax, 75(4): 306-312. https://doi.org/10.1136/thoraxjnl-2019-214104 [Google Scholar] PMid:32139611 PMCid:PMC7231457
- Bernal JL, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G, and Myers R et al. (2021). Effectiveness of COVID-19 vaccines against the B.1.617.2 (Delta) variant. The New England Journal of Medicine, 385: 585-94. https://doi.org/10.1056/NEJMoa2108891 [Google Scholar] PMid:34289274 PMCid:PMC8314739
- Bhardwaj A, Kishore S, and Pandey DK (2022). Artificial intelligence in biological sciences. Life, 12(9): 1430. https://doi.org/10.3390/life12091430 [Google Scholar] PMid:36143468 PMCid:PMC9505413
- Bian L, Gao Q, Gao F, Wang Q, He Q, Wu X, Mao Q, Xu M, and Liang Z et al. (2021). Impact of the Delta variant on vaccine efficacy and response strategies. Expert Review of Vaccines, 20(10): 1201-1209. https://doi.org/10.1080/14760584.2021.1976153 [Google Scholar] PMid:34488546 PMCid:PMC8442750
- Bogard G, Barthelemy J, Hantute-Ghesquier A, Sencio V, Brito-Rodrigues P, Séron K, Robil C, Flourens A, Pinet F, Eberlé D and Trottein F et al. (2023). SARS-CoV-2 infection induces persistent adipose tissue damage in aged golden Syrian hamsters. Cell Death and Disease, 14: 75. https://doi.org/10.1038/s41419-023-05574-w [Google Scholar] PMid:36725844 PMCid:PMC9891765
- Carreño JM, Alshammary H, Tcheou J, Singh G, Raskin AJ, Kawabata H, Sominsky LA, Clark JJ, Adelsberg DC, Bielak DA, and Gonzalez-Reiche AS et al. (2022). Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron. Nature, 602(7898): 682-688. https://doi.org/10.1038/d41586-021-03846-z [Google Scholar] PMid:35016197
- Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR, Malek JA, Coyle P, Ayoub HH, Al Kanaani Z, and Al Kuwari E et al. (2021). mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nature Medicine, 27(9): 1614-1621. https://doi.org/10.1038/s41591-021-01446-y [Google Scholar] PMid:34244681
- Cheng J, Zhao J, Xu W, Zhang T, Xue F, and Liu S (2023). Semantic similarity-based mobile application isomorphic graphical user interface identification. Mathematics, 11(3): 527. https://doi.org/10.3390/math11030527 [Google Scholar]
- Chowdhury SD and Oommen AM (2020). Epidemiology of COVID-19. Journal of Digestive Endoscopy, 11(1): 03-07. https://doi.org/10.1055/s-0040-1712187 [Google Scholar] PMCid:PMC7364648
- Chung H, He S, Nasreen S, Sundaram ME, Buchan SA, Wilson SE, Chen B, Calzavara A, Fell DB, Austin PC, and Wilson K et al. (2021). Effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe COVID-19 outcomes in Ontario, Canada: Test negative design study. BMJ, 374: n1943. https://doi.org/10.1136/bmj.n1943 [Google Scholar] PMid:34417165 PMCid:PMC8377789
- Chze ON and Abdullah AA (2022). COVID-19 mRNA vaccine degradation prediction by using deep learning algorithms. In the International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, IEEE, Sakheer, Bahrain: 444-450. https://doi.org/10.1109/3ICT56508.2022.9990617 [Google Scholar]
- Crommelin DJ, Anchordoquy TJ, Volkin DB, Jiskoot W, and Mastrobattista E (2021). Addressing the cold reality of mRNA vaccine stability. Journal of Pharmaceutical Sciences, 110(3): 997-1001. https://doi.org/10.1016/j.xphs.2020.12.006 [Google Scholar] PMid:33321139 PMCid:PMC7834447
- Dhawan M, Saied AA, Mitra S, Alhumaydhi FA, Emran TB, and Wilairatana P (2022). Omicron variant (B.1.1.529) and its sublineages: What do we know so far amid the emergence of recombinant variants of SARS-CoV-2? Biomedicine and Pharmacotherapy, 154: 113522. https://doi.org/10.1016/j.biopha.2022.113522 [Google Scholar] PMid:36030585 PMCid:PMC9376347
- Ding F, Cocco S, Raj S, Manosas M, Nguyen TTT, Spiering MM, Bensimon D, Allemand JF, and Croquette V (2022). Displacement and dissociation of oligonucleotides during DNA hairpin closure under strain. Nucleic Acids Research, 50(21): 12082-12093. https://doi.org/10.1093/nar/gkac1113 [Google Scholar] PMid:36478056 PMCid:PMC9757040
- Dumpa N, Goel K, Guo Y, McFall H, Pillai AR, Shukla A, Repka MA, and Murthy SN (2019). Stability of vaccines. AAPS Pharmscitech, 20: 42. https://doi.org/10.1208/s12249-018-1254-2 [Google Scholar] PMid:30610415
- Dyer O (2023). COVID-19: China stops counting cases as models predict a million or more deaths. BMJ, 380: p2. https://doi.org/10.1136/bmj.p2 [Google Scholar] PMid:36596574
- El-Sappagh S, Alonso JM, Islam SR, Sultan AM, and Kwak KS (2021). A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease. Scientific Reports, 11: 2660. https://doi.org/10.1038/s41598-021-82098-3 [Google Scholar] PMid:33514817 PMCid:PMC7846613
- Flacco ME, Soldato G, Acuti Martellucci C, Carota R, Di Luzio R, Caponetti A, and Manzoli L (2021). Interim estimates of COVID-19 vaccine effectiveness in a mass vaccination setting: Data from an Italian Province. Vaccines, 9(6): 628. https://doi.org/10.3390/vaccines9060628 [Google Scholar] PMid:34200538 PMCid:PMC8227269
- Gao X, Xia Y, Liu X, Xu Y, Lu P, Liu J, and Liang G (2023). A perspective on SARS-CoV-2 virus-like particles vaccines. International Immunopharmacology, 115: 109650. https://doi.org/10.1016/j.intimp.2022.109650 [Google Scholar] PMid:36649673 PMCid:PMC9832101
- Gao Y, Cai C, Grifoni A, Müller TR, Niessl J, Olofsson A, Humbert M, Hansson L, Österborg A, Bergman P, and Chen P et al. (2022). Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nature Medicine, 28(3): 472-476. https://doi.org/10.1038/s41591-022-01700-x [Google Scholar] PMid:35042228 PMCid:PMC8938268
- Giełzak J, Dejak B, Sokołowski J, and Bociong K (2023). Changes in strength parameters of composite cements as affected by storage temperature—A review of the literature. Coatings, 13(2): 244. https://doi.org/10.3390/coatings13020244 [Google Scholar]
- Giridhar A and Sampathila N (2022). Application of artificial intelligence to predict the degradation of potential mRNA vaccines developed to treat SARS-CoV-2. In the International Conference on Machine Learning and Big Data Analytics, Springer International Publishing, Patna, India: 85-94. https://doi.org/10.1007/978-3-030-82469-3_8 [Google Scholar]
- Grau S, Ferrández O, Martín-García E, and Maldonado R (2021). Accidental interruption of the cold chain for the preservation of the Moderna COVID-19 vaccine. Vaccines, 9(5): 512. https://doi.org/10.3390/vaccines9050512 [Google Scholar] PMid:34067511 PMCid:PMC8155917
- Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, Brooks N, Smaja M, Mircus G, Pan K, and Southern J et al. (2021). Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. The Lancet, 397(10287): 1819-1829. https://doi.org/10.1016/S0140-6736(21)00947-8 [Google Scholar] PMid:33964222
- Hassoun S, Jefferson F, Shi X, Stucky B, Wang J, and Rosa Jr E (2021). Artificial intelligence for biology. Integrative and Comparative Biology, 61(6): 2267-2275. https://doi.org/10.1093/icb/icab188 [Google Scholar] PMid:34448841
- Havers FP, Pham H, Taylor CA, Whitaker M, Patel K, Anglin O, Kambhampati AK, Milucky J, Zell E, Moline HL, and Chai SJ et al. (2022). COVID-19-associated hospitalizations among vaccinated and unvaccinated adults 18 years or older in 13 US States, January 2021 to April 2022. JAMA Internal Medicine, 182(10): 1071-1081. https://doi.org/10.1001/jamainternmed.2022.4299 [Google Scholar] PMid:36074486 PMCid:PMC9459904
- Hayawi K, Shahriar S, Serhani MA, Alashwal H, and Masud MM (2021). Vaccine versus variants (3Vs): Are the COVID-19 vaccines effective against the variants? A systematic review. Vaccines, 9(11): 1305. https://doi.org/10.3390/vaccines9111305 [Google Scholar] PMid:34835238 PMCid:PMC8622454
- He S, Gao B, Sabnis R, and Sun Q (2023). RNAdegformer: Accurate prediction of mRNA degradation at nucleotide resolution with deep learning. Briefings in Bioinformatics, 24(1): 1-14. https://doi.org/10.1093/bib/bbac581 [Google Scholar] PMid:36633966 PMCid:PMC9851316
- Imran SA, Islam MT, Shahnaz C, Islam MT, Imam OT, and Haque M (2020). COVID-19 mRNA vaccine degradation prediction using regularized LSTM model. In the IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), IEEE, Bhubaneswar, India: 328-331. https://doi.org/10.1109/WIECON-ECE52138.2020.9398044 [Google Scholar]
- Ing SH, Abdullah AA, and Kanaya S (2021b). Development of COVID-19 mRNA vaccine degradation prediction system. In the International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), IEEE, Zallaq, Bahrain: 449-454. https://doi.org/10.1109/3ICT53449.2021.9582052 [Google Scholar]
- Ing SH, Abdullah AA, Harun NH, and Kanaya S (2021a). COVID-19 mRNA vaccine degradation prediction using LR and LGBM algorithms. Journal of Physics: Conference Series, 1997(1): 012005. https://doi.org/10.1088/1742-6596/1997/1/012005 [Google Scholar]
- Ing SH, Abdullah AA, Mashor MY, Mohamed-Hussein ZA, Mohamed Z, and Ang WC (2022). Exploration of hybrid deep learning algorithms for COVID-19 mRNA vaccine degradation prediction system. International Journal of Advances in Intelligent Informatics, 8(3): 404-416. https://doi.org/10.26555/ijain.v8i3.950 [Google Scholar]
- Ioannou GN, Locke ER, Green PK, and Berry K (2022). Comparison of Moderna versus Pfizer-BioNTech COVID-19 vaccine outcomes: A target trial emulation study in the US Veterans Affairs healthcare system. EClinicalMedicine, 45: 101326. https://doi.org/10.1016/j.eclinm.2022.101326 [Google Scholar] PMid:35261970 PMCid:PMC8896984
- Jiang X, Coffee M, Bari A, Wang J, Jiang X, Huang J, Shi J, Dai J, Cai J, Zhang T, and Wu Z et al. (2020). Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Computers, Materials and Continua, 63(1): 537-551. https://doi.org/10.32604/cmc.2020.010691 [Google Scholar]
- Jolly P, Estrela P, and Ladomery M (2016). Oligonucleotide-based systems: DNA, microRNAs, DNA/RNA aptamers. Essays in Biochemistry, 60(1): 27-35. https://doi.org/10.1042/EBC20150004 [Google Scholar] PMid:27365033 PMCid:PMC4986462
- Kauffmann AD, Kennedy SD, Moss WN, Kierzek E, Kierzek R, and Turner DH (2022). Nuclear magnetic resonance reveals a two hairpin equilibrium near the 3′-splice site of influenza A segment 7 mRNA that can be shifted by oligonucleotides. RNA Society, 28(4): 508-522. https://doi.org/10.1261/rna.078951.121 [Google Scholar] PMid:34983822 PMCid:PMC8925974
- Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt CJ, Cerikan B, and Lu JM et al. (2020). Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 588(7838): 498-502. https://doi.org/10.1038/s41586-020-2665-2 [Google Scholar] PMid:32805734 PMCid:PMC7116492
- Kim JH, Kim SH, Kim BJ, and Lee HM (2023). Effects of oxygen-containing functional groups on the electrochemical performance of activated carbon for EDLCs. Nanomaterials, 13(2): 262. https://doi.org/10.3390/nano13020262 [Google Scholar] PMid:36678013 PMCid:PMC9861518
- Knabel SJ and Hargittai I (2021). Paradigms and paradoxes: Decoding the "genetic code." Structural Chemistry, 32(1): 9-10. https://doi.org/10.1007/s11224-020-01653-2 [Google Scholar]
- Krishna UV, Premjith B, and Soman KP (2022). A comparative study of pre-trained gene embeddings for COVID-19 mRNA vaccine degradation prediction. In: Giri D, Choo KKR, Ponnusamy S, Meng W, Akleylek S, and Maity SP (Eds.), Proceedings of the seventh international conference on mathematics and computing: Advances in intelligent systems and computing: 302-308. Volume 1412, Springer, Singapore, Singapore. https://doi.org/10.1007/978-981-16-6890-6_22 [Google Scholar]
- Lakhia R, Mishra A, and Patel V (2019). Manipulation of renal gene expression using oligonucleotides. Methods in Cell Biology, 154: 109-120. https://doi.org/10.1016/bs.mcb.2019.05.006 [Google Scholar] PMid:31493813 PMCid:PMC7992197
- Li Y and Breaker RR (1999). Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2‘-hydroxyl group. Journal of the American Chemical Society, 121(23): 5364-5372. https://doi.org/10.1021/ja990592p [Google Scholar]
- Liu J, Chandrashekar A, Sellers D, Barrett J, Jacob-Dolan C, Lifton M, McMahan K, Sciacca M, VanWyk H, Wu C, and Yu J et al. (2022). Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 Omicron. Nature, 603(7901): 493-496. https://doi.org/10.1038/s41586-022-04465-y [Google Scholar] PMid:35102312 PMCid:PMC8930761
- Loh PS and Patzel V (2023). Non-covalent linkage of helper functions to dumbbell-shaped DNA vectors for targeted delivery. Pharmaceutics, 15(2): 370. https://doi.org/10.3390/pharmaceutics15020370 [Google Scholar] PMid:36839697 PMCid:PMC9962178
- Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, Padayachee SD, Dheda K, Barnabas SL, Bhorat QE, and Briner C et al. (2021). Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B.1.351 variant. New England Journal of Medicine, 384(20): 1885-1898. https://doi.org/10.1056/NEJMoa2102214 [Google Scholar] PMid:33725432 PMCid:PMC7993410
- Majhi B (2023). A modified artificial neural network (ANN)-based time series prediction of COVID-19 cases from multi-country data. Journal of the Institution of Engineers (India): Series B, 104(2): 335-350. https://doi.org/10.1007/s40031-022-00849-w [Google Scholar] PMCid:PMC9841947
- Marot S, Bocar Fofana D, Flandre P, Malet I, Zafilaza K, Leducq V, Vivien D, Mrabet S, Poignon C, Calvez V, and Morand-Joubert L et al. (2022). SARS-CoV-2 neutralizing responses in various populations, at the time of SARS-CoV-2 variant virus emergence: Evaluation of two surrogate neutralization assays in front of whole virus neutralization test. Life, 12(12): 2064. https://doi.org/10.3390/life12122064 [Google Scholar] PMid:36556429 PMCid:PMC9782962
- Martins JE, D’Alimonte D, Simões J, Sousa S, Esteves E, Rosa N, Correia MJ, Simões M, and Barros M (2022). MODeLING.Vis: A graphical user interface toolbox developed for machine learning and pattern recognition of biomolecular data. Symmetry, 15(1): 42. https://doi.org/10.3390/sym15010042 [Google Scholar]
- Mascellino MT, Di Timoteo F, De Angelis M, and Oliva A (2021). Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety. Infection and Drug Resistance, 14: 3459-3476. https://doi.org/10.2147/IDR.S315727 [Google Scholar] PMid:34511939 PMCid:PMC8418359
- Msemburi W, Karlinsky A, Knutson V, Aleshin-Guendel S, Chatterji S, and Wakefield J (2023). The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature, 613(7942): 130-137. https://doi.org/10.1038/s41586-022-05522-2 [Google Scholar] PMid:36517599 PMCid:PMC9812776
- Muik A, Wallisch AK, Sänger B, Swanson KA, Mühl J, Chen W, Cai H, Maurus D, Sarkar R, Türeci Ö, and Dormitzer PR et al. (2021). Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine–elicited human sera. Science, 371(6534): 1152-1153. https://doi.org/10.1126/science.abg6105 [Google Scholar] PMid:33514629 PMCid:PMC7971771
- Muneer A, Fati SM, Akbar NA, Agustriawan D, and Wahyudi ST (2022). iVaccine-Deep: Prediction of COVID-19 mRNA vaccine degradation using deep learning. Journal of King Saud University-Computer and Information Sciences, 34(9): 7419-7432. https://doi.org/10.1016/j.jksuci.2021.10.001 [Google Scholar] PMid:38620874 PMCid:PMC8513509
- Nemet I, Kliker L, Lustig Y, Zuckerman N, Erster O, Cohen C, Kreiss Y, Alroy-Preis S, Regev-Yochay G, Mendelson E, and Mandelboim M et al. (2022). Third BNT162b2 vaccination neutralization of SARS-CoV-2 Omicron infection. New England Journal of Medicine, 386(5): 492-494. https://doi.org/10.1056/NEJMc2119358 [Google Scholar] PMid:34965337 PMCid:PMC8823651
- Nguyen NH, Trotel-Aziz P, Villaume S, Rabenoelina F, Schwarzenberg A, Nguema-Ona E, Clément C, Baillieul F, and Aziz A (2020). Bacillus subtilis and Pseudomonas fluorescens trigger common and distinct systemic immune responses in Arabidopsis thaliana depending on the pathogen lifestyle. Vaccines, 8(3): 503. https://doi.org/10.3390/vaccines8030503 [Google Scholar] PMid:32899695 PMCid:PMC7563191
- Nikam R and Gromiha MM (2019). Seq2Feature: A comprehensive web-based feature extraction tool. Bioinformatics, 35(22): 4797-4799. https://doi.org/10.1093/bioinformatics/btz432 [Google Scholar] PMid:31135038
- Qaid TS, Mazaar H, Alqahtani MS, Raweh AA, and Alakwaa W (2021). Deep sequence modelling for predicting COVID-19 mRNA vaccine degradation. PeerJ Computer Science, 7: e597. https://doi.org/10.7717/peerj-cs.597 [Google Scholar] PMid:34239977 PMCid:PMC8237341
- Rabaan AA, Al-Ahmed SH, Albayat H, Alwarthan S, Alhajri M, Najim MA, AlShehail BM, Al-Adsani W, Alghadeer A, Abduljabbar WA, and Alotaibi N et al. (2023). Variants of SARS-CoV-2: Influences on the vaccines’ effectiveness and possible strategies to overcome their consequences. Medicina, 59(3): 507. https://doi.org/10.3390/medicina59030507 [Google Scholar] PMid:36984508 PMCid:PMC10051174
- Ramalingam S, Thamizhvel R, Sudagar S, and Silambarasan R (2023). Production of third generation bio-fuel through thermal cracking process by utilizing COVID-19 plastic wastes. Materials Today: Proceedings, 72: 1618-1623. https://doi.org/10.1016/j.matpr.2022.09.430 [Google Scholar] PMid:36213622 PMCid:PMC9529355
- Ribal J, Marques-Perez I, and Segura M (2022). A farm compensation model to reduce the risk of pest spreading: An application for Xylella fastidiosa in Mediterranean agriculture. NJAS: Impact in Agricultural and Life Sciences, 94(1): 112-136. https://doi.org/10.1080/27685241.2022.2108732 [Google Scholar]
- Santos AG, da Rocha GO, and de Andrade JB (2019). Occurrence of the potent mutagens 2-nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles. Scientific Reports, 9: 1. https://doi.org/10.1038/s41598-018-37186-2 [Google Scholar] PMid:30626917 PMCid:PMC6327027
- Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, Lalloo U, Masilela MS, Moodley D, Hanley S, and Fouche L et al. (2021). Efficacy of NVX-CoV2373 COVID-19 vaccine against the B.1.351 variant. New England Journal of Medicine, 384(20): 1899-1909. https://doi.org/10.1056/NEJMoa2103055 [Google Scholar] PMid:33951374 PMCid:PMC8091623
- Singhal A (2020). Predicting hydroxyl mediated nucleophilic degradation and molecular stability of RNA sequences through the application of deep learning methods. Arxiv Preprint Arxiv:2011.05136. https://doi.org/10.48550/arXiv.2011.05136 [Google Scholar]
- Skowronski DM, Setayeshgar S, Zou M, Prystajecky N, Tyson JR, Galanis E, Naus M, Patrick DM, Sbihi H, El Adam S, and Henry B et al. (2022). Single-dose mRNA vaccine effectiveness against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including alpha and gamma variants: A test-negative design in adults 70 years and older in British Columbia, Canada. Clinical Infectious Diseases, 74(7): 1158-1165. https://doi.org/10.1093/cid/ciab616 [Google Scholar] PMid:34244723 PMCid:PMC8406884
- Stenberg JA, Sundh I, Becher PG, Björkman C, Dubey M, Egan PA, Friberg H, Gil JF, Jensen DF, Jonsson M, and Karlsson M et al. (2021). When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science, 94(3): 665-676. https://doi.org/10.1007/s10340-021-01354-7 [Google Scholar]
- Štorkánová H, Oreská S, Špiritović M, Heřmánková B, Bubová K, Komarc M, Pavelka K, Vencovský J, Distler JH, Šenolt L, and Bečvář R et al. (2021). Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: A cross-sectional and longitudinal study. Scientific Reports, 11: 1. https://doi.org/10.1038/s41598-020-79139-8 [Google Scholar] PMid:33414495 PMCid:PMC7791137
- Sulayman N (2023). Deep learning-based predictive model of mRNA vaccine deterioration: An analysis of the Stanford COVID-19 mRNA vaccine dataset. Baghdad Science Journal, 20(4(SI)): 1451-1458. https://doi.org/10.21123/bsj.2023.8504 [Google Scholar]
- Tiwari M, Pati D, Mohapatra R, Sahu BB, and Singh P (2022). The impact of microbes in plant immunity and priming induced inheritance: A sustainable approach for crop protection. Plant Stress, 4: 100072. https://doi.org/10.1016/j.stress.2022.100072 [Google Scholar]
- Tofarides AG, Christaki E, Milionis H, and Nikolopoulos GK (2022). Effect of vaccination against SARS-CoV-2 on long COVID-19: A narrative review. Life, 12(12): 2057. https://doi.org/10.3390/life12122057 [Google Scholar] PMid:36556422 PMCid:PMC9785763
- Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, Zhou D, Ginn HM, Selvaraj M, Liu C, Mentzer AJ, Supasa P, Duyvesteyn HM, and Das R et al. (2022). Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell, 185(14): 2422-2433. https://doi.org/10.1016/j.cell.2022.06.005 [Google Scholar] PMid:35772405 PMCid:PMC9181312
- Uddin MN Roni MA (2021). Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines, 9(9): 1033. https://doi.org/10.3390/vaccines9091033 [Google Scholar] PMid:34579270 PMCid:PMC8473088
- Vena A, Traman L, Bavastro M, Limongelli A, Dentone C, Magnè F, Giacobbe DR, Mikulska M, Taramasso L, Di Biagio A, and Bassetti M (2022). Early clinical experience with molnupiravir for mild to moderate breakthrough COVID-19 among fully vaccinated patients at risk for disease progression. Vaccines, 10(7): 1141. https://doi.org/10.3390/vaccines10071141 [Google Scholar] PMid:35891305 PMCid:PMC9318911
- Vinuesa R, Azizpour H, Leite I, Balaam M, Dignum V, Domisch S, Felländer A, Langhans SD, Tegmark M, and Fuso Nerini F (2020). The role of artificial intelligence in achieving the sustainable development goals. Nature Communications, 11: 233. https://doi.org/10.1038/s41467-019-14108-y [Google Scholar] PMid:31932590 PMCid:PMC6957485
- Vodilovska V, Gievska S, and Ivanoska I (2023). Hyperparameter optimization of graph neural networks for mRNA degradation prediction. In the 46th MIPRO ICT and Electronics Convention, IEEE, Opatija, Croatia: 423-428. https://doi.org/10.23919/MIPRO57284.2023.10159737 [Google Scholar]
- Wagemans J, Holtappels D, Vainio E, Rabiey M, Marzachì C, Herrero S, Ravanbakhsh M, Tebbe CC, Ogliastro M, Ayllón MA, and Turina M (2022). Going viral: Virus-based biological control agents for plant protection. Annual Review of Phytopathology, 60: 21-42. https://doi.org/10.1146/annurev-phyto-021621-114208 [Google Scholar] PMid:35300520
- Wang H, Paulson KR, Pease SA, Watson S, Comfort H, Zheng P, Aravkin AY, Bisignano C, Barber RM, Alam T, and Fuller JE et al. (2022). Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–21. The Lancet, 399(10334): 1513-1536. https://doi.org/10.1016/S0140-6736(21)02796-3 [Google Scholar]
- Wang P, Casner RG, Nair MS, Wang M, Yu J, Cerutti G, Liu L, Kwong PD, Huang Y, Shapiro L, and Ho DD (2021). Increased resistance of SARS-CoV-2 variant P. 1 to antibody neutralization. Cell Host and Microbe, 29(5): 747-751. https://doi.org/10.1016/j.chom.2021.04.007 [Google Scholar] PMid:33887205 PMCid:PMC8053237
- Wang Y (2021). Predicting the degradation of COVID-19 mRNA vaccine with graph convolutional networks. In the 6th International Conference on Machine Learning Technologies, Association for Computing Machinery, Jeju Island, Republic of Korea: 111-116. https://doi.org/10.1145/3468891.3468907 [Google Scholar]
- Wayment-Steele HK, Kim DS, Choe CA, Nicol JJ, Wellington-Oguri R, Watkins AM, Parra Sperberg RA, Huang PS, Participants E, and Das R (2021). Theoretical basis for stabilizing messenger RNA through secondary structure design. Nucleic Acids Research, 49(18): 10604-10617. https://doi.org/10.1093/nar/gkab764 [Google Scholar] PMid:34520542 PMCid:PMC8499941
- Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, and Yuan ML et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798): 265-269. https://doi.org/10.1038/s41586-020-2008-3 [Google Scholar] PMid:32015508 PMCid:PMC7094943
- Yamada T and Takaoka A (2023). Innate immune recognition against SARS-CoV-2. Inflammation and Regeneration, 43: 7. https://doi.org/10.1186/s41232-023-00259-5 [Google Scholar] PMid:36703213 PMCid:PMC9879261
- Yit TW, Hassan R, Zakaria NH, Kasim S, Moi SH, Khairuddin AR, and Amnur H (2023). Transformer in mRNA degradation prediction. International Journal on Informatics Visualization, 7(2): 588-599. https://doi.org/10.30630/joiv.7.2.1165 [Google Scholar]
- Zhang C, Maruggi G, Shan H, and Li J (2019). Advances in mRNA vaccines for infectious diseases. Frontiers in Immunology, 10: 429065. https://doi.org/10.3389/fimmu.2019.00594 [Google Scholar] PMid:30972078 PMCid:PMC6446947
- Zhang J, Tan L, Tao X, Pham T, and Chen B (2020a). Relational intelligence recognition in online social networks: A survey. Computer Science Review, 35: 100221. https://doi.org/10.1016/j.cosrev.2019.100221 [Google Scholar]
- Zhang LK, Sun Y, Zeng H, Wang Q, Jiang X, Shang WJ, Wu Y, Li S, Zhang YL, Hao ZN, and Chen H et al. (2020b). Calcium channel blocker amlodipine besylate therapy is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discovery, 6: 96. https://doi.org/10.1038/s41421-020-00235-0 [Google Scholar] PMid:33349633 PMCid:PMC7752915
|