International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 6 (June 2024), Pages: 59-67

----------------------------------------------

 Original Research Paper

Transdermal drug delivery using low-frequency sonophoresis: COMSOL simulation of piezoelectric array transducers

 Author(s): 

 Sehreen Moorat 1, *, Ahsan Ahmed Ursani 2, Aftab Memon 2, Nashrul Fazli Mohd Nasir 3, Majid Nour 4

 Affiliation(s):

 1Institite of Biomedical Engineering and Technology, Liaquat University of Medical Health and Sciences, Jamshoro, Pakistan
 2Department of Biomedical Engineering, Telecommunication Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan
 3Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
 4Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah, Saudi Arabia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-9646-9537

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.06.007

 Abstract

This study explores the design and simulation of specialized sonophoretic transducers aimed at enhancing the transdermal delivery of large drugs. We examine different elements of the transducer's design, such as the choice of materials, its dimensions, and the matching of acoustic impedance. We selected PZT-4, from the lead zirconate titanate (PZT) group, as the main material due to its excellent piezoelectric features and durability. We also use polymer matrices to make the transducer less rigid. The simulation outcomes, using COMSOL Multiphysics, cover five different transducer array sizes (8x5, 10x6, 12x8, 14x9, and 16x10) within the frequency range of 20-40 kHz. We measure the acoustic pressure at a depth of 0.1 mm under the skin, which is key for successful drug delivery through the skin. Our results show how increasing the size of the array affects the transducer's efficiency. We confirm our simulation results by comparing them with a previously published ANSYS simulation and finding good alignment. This comparison adds reliability to our methods and outcomes. The study also proposes creating a small, wrist-mounted device for drug delivery that could be combined with drug patches, making it user-friendly. Moreover, we stress the need to follow Mechanical Index (MI) guidelines to avoid damaging the skin. Overall, our findings highlight the importance of the array size in the performance of the transducer and confirm the validity of our simulation approach, paving the way for innovative solutions in drug delivery that could have wide applications in healthcare.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Sonophoresis, Low frequency, Transdermal drug delivery, COMSOL, Acoustic pressure, Mechanical index

 Article history

 Received 17 January 2024, Received in revised form 22 May 2024, Accepted 27 May 2024

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Moorat S, Ursani AA, Memon A, Nasir NFM, and Nour M (2024). Transdermal drug delivery using low-frequency sonophoresis: COMSOL simulation of piezoelectric array transducers. International Journal of Advanced and Applied Sciences, 11(6): 59-67

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3

 Tables

 Table 1 Table 2 Table 3 Table 4

----------------------------------------------   

 References (61)

  1. Abe Y and Nishizawa M (2021). Electrical aspects of skin as a pathway to engineering skin devices. APL Bioengineering, 5(4): 041509. https://doi.org/10.1063/5.0064529   [Google Scholar] PMid:34849444 PMCid:PMC8604566
  2. Ahmad A, Rasul T, Yousaf A, and Zaman U (2020). Understanding factors influencing elderly diabetic patients’ continuance intention to use digital health wearables: Extending the technology acceptance model (TAM). Journal of Open Innovation: Technology, Market, and Complexity, 6(3): 81. https://doi.org/10.3390/joitmc6030081   [Google Scholar]
  3. Bruno BP, Fahmy AR, Stürmer M, Wallrabe U, and Wapler MC (2018). Properties of piezoceramic materials in high electric field actuator applications. Smart Materials and Structures, 28(1): 015029. https://doi.org/10.1088/1361-665X/aae8fb   [Google Scholar]
  4. Cai Y, Zhou Y, Zhang P, Kalia YN, Gratieri T, and Chen Y (2020). Tissue levels of flurbiprofen in the rat plantar heel after short-duration topical iontophoresis are sufficient to induce pharmacodynamic responses to local pain stimuli. Pharmaceutics, 12(7): 608. https://doi.org/10.3390/pharmaceutics12070608   [Google Scholar] PMid:32629832 PMCid:PMC7408369
  5. Čáp I, Čápová K, Smetana M, and Borik Š (2021). Electromagnetic and acoustic waves in bioengineering applications. BoD–Books on Demand, Norderstedt, Germany. https://doi.org/10.5772/intechopen.101652   [Google Scholar]
  6. Castillo M, Acevedo P, and Moreno E (2003). KLM model for lossy piezoelectric transducers. Ultrasonics, 41(8): 671-679. https://doi.org/10.1016/S0041-624X(03)00101-X   [Google Scholar] PMid:14585479
  7. Conlon TW, Yousef N, Mayordomo-Colunga J, Tissot C, Fraga MV, Bhombal S, Suryawanshi P, Villanueva AM, Siassi B, and Singh Y (2022). Establishing a risk assessment framework for point-of-care ultrasound. European Journal of Pediatrics, 181(4): 1449–1457. https://doi.org/10.1007/s00431-021-04324-4   [Google Scholar] PMid:34846557 PMCid:PMC8964607
  8. Cordery SF, Husbands SM, Bailey CP, Guy RH and Delgado-Charro MB (2019). Simultaneous transdermal delivery of buprenorphine hydrochloride and naltrexone hydrochloride by iontophoresis. Molecular Pharmaceutics, 16(6): 2808–2816. https://doi.org/10.1021/acs.molpharmaceut.9b00337   [Google Scholar] PMid:31070927
  9. del Río-Sancho S, Pan Delgado D, de la Fuente GF, García-Caballero T, Taboada-Suárez A, Csaba N, Bao-Varela C, and José Alonso M (2020). Laser-induced transient skin disruption to enhance cutaneous drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 156: 165–175. https://doi.org/10.1016/j.ejpb.2020.08.027   [Google Scholar] PMid:32891732
  10. Duncan B, Al-Kassas R, Zhang G, Hughes D, and Qiu Y (2023). Ultrasound-mediated ocular drug delivery: From physics and instrumentation to future directions. Micromachines, 14(8): 1575. https://doi.org/10.3390/mi14081575   [Google Scholar] PMid:37630111 PMCid:PMC10456754
  11. Fan J, Stoll WA, and Lynch CS (1999). Nonlinear constitutive behavior of soft and hard PZT: Experiments and modeling. Acta Materialia, 47(17): 4415-4425. https://doi.org/10.1016/S1359-6454(99)00306-7   [Google Scholar]
  12. Fatahi Asl J, Farzanegan Z, Tahmasbi M, Birgani SM, Malekzade M, and Yazdaninejad H (2021). Evaluation of the scan duration and mechanical and thermal indices applied for the diagnostic ultrasound examinations. Journal of Ultrasound in Medicine, 40(9): 1839–1850. https://doi.org/10.1002/jum.15565   [Google Scholar] PMid:33179801
  13. Geoghegan R, ter Haar G, Nightingale K, Marks L, and Natarajan S (2022). Methods of monitoring thermal ablation of soft tissue tumors – A comprehensive review. Medical Physics, 49(2): 769–791. https://doi.org/10.1002/mp.15439   [Google Scholar] PMid:34965307
  14. Grey CP and Hall DS (2020). Prospects for lithium-ion batteries and beyond–A 2030 vision. Nature Communications, 11(1): 1-4. https://doi.org/10.1038/s41467-020-19991-4   [Google Scholar] PMid:33293543 PMCid:PMC7722877
  15. Han X, Yi W, Chen S, Cai Z, Zhu Y, Han W, Guo X, Shen J, Cui W, and Bai D (2023). Ultrasound-responsive smart composite biomaterials in tissue repair. Nano Today, 49: 101804. https://doi.org/10.1016/j.nantod.2023.101804   [Google Scholar]
  16. He X, Lu Y, Chu T, Liao W, Li T, Liu X, Liang L, Li H, Dai X, Liu Y, and Zhou L (2023). High-stability quinary lead-based piezoelectric ceramics with high piezoelectric properties. Journal of Applied Physics, 134(14): 144103. https://doi.org/10.1063/5.0167214   [Google Scholar]
  17. Hsieh A, Baker MB, Phalen JM, Mejias-Garcia J, Hsieh A, Hsieh A, and Canelli R (2022). Handheld point-of-care ultrasound: Safety considerations for creating guidelines. Journal of Intensive Care Medicine, 37(9): 1146-1151. https://doi.org/10.1177/08850666221076041   [Google Scholar] PMid:35118909 PMCid:PMC9393648
  18. Izadifar Z, Babyn P, and Chapman D (2017). Mechanical and biological effects of ultrasound: A review of present knowledge. Ultrasound in Medicine and Biology, 43(6): 1085–1104. https://doi.org/10.1016/j.ultrasmedbio.2017.01.023   [Google Scholar] PMid:28342566
  19. Ji W, Liu L, Xing Z, Zhang D, Wang Y, Chen L, Chen Y, Sun X, and Du Y (2021). Total-focus ultrasonic imaging of defects in solids using a PZT piezoelectric micromachined ultrasonic transducer array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(4): 1380–1386. https://doi.org/10.1109/TUFFC.2020.3032988   [Google Scholar] PMid:33090950
  20. Kim DM, Park SK, and Park SG (2021). A study on the performance evaluation criteria and methods of abdominal ultrasound devices based on international standards. Safety, 7(2): 31. https://doi.org/10.3390/safety7020031   [Google Scholar]
  21. Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD, Raj VS, Epperly MW, Klimstra WB, Haagmans BL, Korkmaz E et al. (2020). Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EbioMedicine, 55: 102743. https://doi.org/10.1016/j.ebiom.2020.102743   [Google Scholar] PMid:32249203 PMCid:PMC7128973
  22. Kim H and Jiang X (2023). Numerical study of a miniaturized, 1–3 piezoelectric composite focused ultrasound transducer. Applied Sciences, 13(1): 615. https://doi.org/10.3390/app13010615   [Google Scholar]
  23. Kim H, Yoo J, Heo D, Seo YS, Lim HG, and Kim HH (2022). High-attenuation backing layer for miniaturized ultrasound imaging transducer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69(6): 1960–1969. https://doi.org/10.1109/TUFFC.2022.3164451   [Google Scholar] PMid:35377844
  24. Kouritem SA, Al-Moghazy MA, Noori M, and Altabey WA (2022). Mass tuning technique for a broadband piezoelectric energy harvester array. Mechanical Systems and Signal Processing, 181: 109500. https://doi.org/10.1016/j.ymssp.2022.109500   [Google Scholar]
  25. Koznarska-Buczkowska A, Chilicka K, Rusztowicz M, and Adamczyk E (2022). The effectiveness of green tea and sonophoresis on oily skin: A case report. Medical Science Pulse, 16(1): 38–42. https://doi.org/10.5604/01.3001.0015.7911   [Google Scholar]
  26. Krisnamurti DGB, Purwaningsih EH, Antarianto RD, and Louisa M (2022). Glucose-responsive pectin insulin patch for diabetes mellitus: A review. In the 6th Biomedical Engineering’s Recent Progress in Biomaterials, Drugs Development, And Medical Devices: Proceedings of the 6th International Symposium of Biomedical Engineering, AIP Publishing, Depok, Indonesia, 2537(1): 040014. https://doi.org/10.1063/5.0098287   [Google Scholar]
  27. Lee J and Rhee YS (2022). Ophthalmic dosage forms for drug delivery to posterior segment. Journal of Pharmaceutical Investigation, 52(2): 161-173. https://doi.org/10.1007/s40005-021-00554-8   [Google Scholar]
  28. Lee T, Jung J, Lee SM, Park J, Park JH, Paik KW, and Lee HJ (2022). FPCB as an acoustic matching layer for 1D linear ultrasound transducer arrays. Sensors, 22(15): 5557. https://doi.org/10.3390/s22155557   [Google Scholar] PMid:35898059 PMCid:PMC9332256
  29. Li S, Xu J, Li R, Wang Y, Zhang M, Li J, Yin S, Liu G, Zhang L, Li B, Gu Q, and Su Y (2022). Stretchable electronic facial masks for sonophoresis. ACS Nano, 16(4): 5961–5974. https://doi.org/10.1021/acsnano.1c11181   [Google Scholar] PMid:35363481
  30. Li Z, Guo R, Fei C, Li D, Chen D, Zheng C, Wu R, Feng W, and Yang Y (2021). Liquid lens with adjustable focus for ultrasonic imaging. Applied Acoustics, 175: 107787. https://doi.org/10.1016/j.apacoust.2020.107787   [Google Scholar]
  31. Liu HL and Hsieh CM (2009). Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation. Ultrasonics Sonochemistry, 16(3): 431–438. https://doi.org/10.1016/j.ultsonch.2008.08.009   [Google Scholar] PMid:18951828
  32. Liu W, Zhu C, and Wu D (2021). Flexible piezoelectric micro ultrasonic transducer array integrated on various flexible substrates. Sensors and Actuators A: Physical, 317: 112476. https://doi.org/10.1016/j.sna.2020.112476   [Google Scholar]
  33. Lu T, Ji S, Jin W, Yang Q, Luo Q, and Ren TL (2023). Biocompatible and long-term monitoring strategies of wearable, ingestible and implantable biosensors: Reform the next generation healthcare. Sensors, 23(6): 2991. https://doi.org/10.3390/s23062991   [Google Scholar] PMid:36991702 PMCid:PMC10054135
  34. Ma S, Liu C, Li B, Zhang T, Jiang L, and Wang R (2020). Sonophoresis enhanced transdermal delivery of cisplatin in the xenografted tumor model of cervical cancer. OncoTargets and Therapy, 13: 889–902. https://doi.org/10.2147/OTT.S238126   [Google Scholar] PMid:32099393 PMCid:PMC6996214
  35. Martin K (2010). The acoustic safety of new ultrasound technologies. Ultrasound, 18(3): 110-118. https://doi.org/10.1258/ult.2010.010024   [Google Scholar]
  36. Mitra AK, Kwatra D, and Vadlapud AD (2014). Drug delivery. Jones and Bartlett Learning, Burlington, USA.   [Google Scholar]
  37. Moghaddam ZH, Mokhtari-Dizaji M, Movahedin M, and Ravari ME (2017). Estimation of the distribution of low-intensity ultrasound mechanical index as a parameter affecting the proliferation of spermatogonia stem cells in vitro. Ultrasonics Sonochemistry, 37: 571–581. https://doi.org/10.1016/j.ultsonch.2017.02.013   [Google Scholar] PMid:28427670
  38. Moyano DB, Paraiso DA, and González-Lezcano RA (2022). Possible effects on health of ultrasound exposure, risk factors in the work environment and occupational safety review. Healthcare, 10(3): 423. https://doi.org/10.3390/healthcare10030423   [Google Scholar] PMid:35326901 PMCid:PMC8954895
  39. Nahavandi D, Alizadehsani R, Khosravi A, and Acharya UR (2022). Application of artificial intelligence in wearable devices: Opportunities and challenges. Computer Methods and Programs in Biomedicine, 213: 106541. https://doi.org/10.1016/j.cmpb.2021.106541   [Google Scholar] PMid:34837860
  40. Park J, Lee H, Lim GS, Kim N, Kim D, and Kim YC (2019). Enhanced transdermal drug delivery by sonophoresis and simultaneous application of sonophoresis and iontophoresis. AAPS PharmSciTech, 20: 96. https://doi.org/10.1208/s12249-019-1309-z   [Google Scholar] PMid:30694397
  41. Patricio Rodrigues E, Francisco de Oliveira T, and Buiochi F (2018). Development and characterization of a 2D phased array ultrasonic transducer for underwater applications. In the 24th ABCM International Congress of Mechanical Engineering, Rio de Janeiro, Brazil. https://doi.org/10.26678/ABCM.COBEM2017.COB17-2391   [Google Scholar]
  42. Peng H, Qian X, Mao L, Jiang L, Sun Y, and Zhou Q (2019). Ultrafast ultrasound imaging in acoustic microbubble trapping. Applied Physics Letters, 115(20): 203701. https://doi.org/10.1063/1.5124437   [Google Scholar]
  43. Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, and Alexander A (2022). Overcoming skin barriers through advanced transdermal drug delivery approaches. Journal of Controlled Release, 351: 361–380. https://doi.org/10.1016/j.jconrel.2022.09.025   [Google Scholar] PMid:36169040
  44. Quarato CMI, Lacedonia D, Salvemini M, Tuccari G, Mastrodonato G, Villani R, and Sperandeo M (2023). A review on biological effects of ultrasounds: Key messages for clinicians. Diagnostics, 13(5): 855. https://doi.org/10.3390/diagnostics13050855   [Google Scholar] PMid:36899998 PMCid:PMC10001275
  45. Sá GFF, Serpa C, and Arnaut LG (2013). Stratum corneum permeabilization with photoacoustic waves generated by piezophotonic materials. Journal of Controlled Release, 167(3): 290–300. https://doi.org/10.1016/j.jconrel.2013.02.005   [Google Scholar] PMid:23419949
  46. Seah BCQ and Teo BM (2018). Recent advances in ultrasound-based transdermal drug delivery. International Journal of Nanomedicine, 13: 7749. https://doi.org/10.2147/IJN.S174759   [Google Scholar] PMid:30538456 PMCid:PMC6251463
  47. Sekhar MC, Veena E, Kumar NS, Naidu KCB, Mallikarjuna A, and Basha DB (2023). A review on piezoelectric materials and their applications. Crystal Research and Technology, 58(2): 2200130. https://doi.org/10.1002/crat.202200130   [Google Scholar]
  48. Şen T, Tüfekçioğlu O, and Koza Y (2015). Mechanical index. Anatolian Journal of Cardiology, 15(4): 334-336. https://doi.org/10.5152/akd.2015.6061   [Google Scholar] PMid:25880292 PMCid:PMC5336845
  49. Seneviratne S, Hu Y, Nguyen T, Lan G, Khalifa S, Thilakarathna K, Hassan M, and Seneviratne A (2017). A survey of wearable devices and challenges. IEEE Communications Surveys and Tutorials, 19(4): 2573–2620. https://doi.org/10.1109/COMST.2017.2731979   [Google Scholar]
  50. Singh P, Muhammad IJ, Nelson NE, Tran KT, Vinikoor T, Chorsi MT, and Nguyen TD (2022). Transdermal delivery for gene therapy. Drug Delivery and Translational Research, 12(11): 2613-2633. https://doi.org/10.1007/s13346-022-01138-1   [Google Scholar] PMid:35538189 PMCid:PMC9089295
  51. Tu L, Liao Z, Luo Z, Wu YL, Herrmann A, and Huo S (2021). Ultrasound-controlled drug release and drug activation for cancer therapy. Exploration, 1(3): 20210023. https://doi.org/10.1002/EXP.20210023   [Google Scholar] PMid:37323693 PMCid:PMC10190934
  52. Vaidya J and Shende P (2020). Potential of sonophoresis as a skin penetration technique in the treatment of rheumatoid arthritis with transdermal patch. AAPS PharmSciTech, 21(5): 1-9. https://doi.org/10.1208/s12249-020-01725-w   [Google Scholar] PMid:32601758
  53. Wang B, Long Z, Hong Y, Pan Q, Lin W, and Yang Z (2021). Woodpecker-mimic two-layer band energy harvester with a piezoelectric array for powering wrist-worn wearables. Nano Energy, 89: 106385. https://doi.org/10.1016/j.nanoen.2021.106385   [Google Scholar]
  54. Wang Y, Tao J, Guo F, Li S, Huang X, Dong J, and Cao W (2018). Magnesium alloy matching layer for high-performance transducer applications. Sensors, 18(12): 4424. https://doi.org/10.3390/s18124424   [Google Scholar] PMid:30558141 PMCid:PMC6308683
  55. Yu CC, Shah A, Amiri N, Marcus C, Nayeem MOG, Bhayadia AK, Karami A, and Dagdeviren C (2023). A conformable ultrasound patch for cavitation-enhanced transdermal cosmeceutical delivery. Advanced Materials, 35(23): 2300066. https://doi.org/10.1002/adma.202300066   [Google Scholar] PMid:36934314
  56. Yu YQ, Yang X, Wu XF, and Fan YB (2021). Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications. Frontiers in Bioengineering and Biotechnology, 9: 646554. https://doi.org/10.3389/fbioe.2021.646554   [Google Scholar] PMid:33855015 PMCid:PMC8039394
  57. Zaid Alkilani A, McCrudden MT, and Donnelly RF (2015). Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 7(4): 438-470. https://doi.org/10.3390/pharmaceutics7040438   [Google Scholar] PMid:26506371 PMCid:PMC4695828
  58. Zhang Z, Xu J, Yang L, Liu S, Xiao J, Li X, Wang X, and Luo H (2018). Design and comparison of PMN-PT single crystals and PZT ceramics based medical phased array ultrasonic transducer. Sensors and Actuators A: Physical, 283: 273–281. https://doi.org/10.1016/j.sna.2018.09.067   [Google Scholar]
  59. Zhao J, Li Z, Fei C, Hou C, Wang D, Lou L, Chen D, Li D, Chen Z, and Yang Y (2022). Ultrawide bandwidth high-frequency ultrasonic transducers with gradient acoustic impedance matching layer for biomedical imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69(6): 1952–1959. https://doi.org/10.1109/TUFFC.2022.3141203   [Google Scholar] PMid:35020592
  60. Zhou Q, Cha JH, Huang Y, Zhang R, Cao W, and Shung KK (2009). Alumina/epoxy nanocomposite matching layers for high-frequency ultrasound transducer application. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56(1): 213–219. https://doi.org/10.1109/TUFFC.2009.1021   [Google Scholar] PMid:19213648 PMCid:PMC2729565
  61. Zhu P, Peng H, Mao L, and Tian J (2021). Piezoelectric single crystal ultrasonic transducer for endoscopic drug release in gastric mucosa. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(4): 952–960. https://doi.org/10.1109/TUFFC.2020.3026320   [Google Scholar] PMid:32970594