International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 3 (March 2024), Pages: 55-76

----------------------------------------------

 Review Paper

Harnessing nutritional immunity and advanced diagnostics for COVID-19 prevention

 Author(s): 

 Muhammad Kamran Hakeem, Amir Sohail, Soleiman Hisaindee, Iltaf Shah *

 Affiliation(s):

 Department of Chemistry College of Science, UAE University, AL Ain, Abu Dhabi, United Arab Emirates

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-3739-6083

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.03.007

 Abstract

The ongoing worldwide health crisis caused by the COVID-19 pandemic, which began in Wuhan, China, has led to infections across the globe. Although many vaccines are available, a definitive cure has yet to be found. This study examines methods to lessen the impact of the disease, focusing on preventive actions and strengthening the immune system through diets rich in vitamins and nutrients. Our investigation also considers non-traditional methods, particularly the vital role of early detection in controlling the spread of COVID-19. Accurate diagnostic techniques are essential in this effort. Surprisingly, there is a lack of comprehensive studies on the complex interactions between various vitamins, trace metals, and immunity in relation to COVID-19. Addressing this gap, our review carefully analyzes how diets enriched with vitamin D can boost immunity. Additionally, we explore worldwide challenges that impede the progress of effective and quick diagnostic methods. Our goal is to provide a thorough understanding of the current situation regarding immunity, diagnostic procedures, and treatment approaches for COVID-19. This review not only covers various diagnostic methods for SARS-CoVs but also assesses the effectiveness of different vaccines against COVID-19. Through detailed analysis, we contribute to the ongoing discussion on fighting COVID-19, providing important information for researchers, healthcare workers, and policymakers.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 COVID-19 pandemic, Immune system fortification, Early detection, Diagnostic methods, Vitamin D-enriched diets

 Article history

 Received 7 October 2023, Received in revised form 5 February 2024, Accepted 7 February 2024

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Hakeem MK, Sohail A, Hisaindee S, Shah I (2024). Harnessing nutritional immunity and advanced diagnostics for COVID-19 prevention. International Journal of Advanced and Applied Sciences, 11(3): 55-76

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 

 Tables

 Table 1 

----------------------------------------------   

 References (164)

  1. Acevedo-Murillo JA, García León ML, Firo-Reyes V, Santiago-Cordova JL, Gonzalez-Rodriguez AP, and Wong-Chew RM (2019). Zinc supplementation promotes a Th1 response and improves clinical symptoms in fewer hours in children with pneumonia younger than 5 years old: A randomized controlled clinical trial. Frontiers in Pediatrics, 7: 431. https://doi.org/10.3389/fped.2019.00431   [Google Scholar] PMid:31803694 PMCid:PMC6874056
  2. Aglipay M, Birken CS, Parkin PC, Loeb MB, Thorpe K, Chen Y, Laupacis A, Mamdani M, Macarthur C, Hoch JS, and Mazzulli T et al. (2017). Effect of high-dose vs standard-dose wintertime vitamin D supplementation on viral upper respiratory tract infections in young healthy children. JAMA, 318(3): 245-254. https://doi.org/10.1001/jama.2017.8708   [Google Scholar] PMid:28719693 PMCid:PMC5817430
  3. Aitken RJ, Bromfield EG, and Gibb Z (2022). Oxidative stress and reproductive function: The impact of oxidative stress on reproduction: A focus on gametogenesis and fertilization. Reproduction, 164(6): F79-F94. https://doi.org/10.1530/REP-22-0126   [Google Scholar] PMid:35929832
  4. Algahtani SN, Alzarroug AF, Alghamdi HK, Algahtani HK, Alsywina NB, and Bin Abdulrahman KA (2022). Investigation on the factors associated with the persistence of anosmia and ageusia in Saudi COVID-19 patients. International Journal of Environmental Research and Public Health, 19(3): 1047. https://doi.org/10.3390/ijerph19031047   [Google Scholar] PMid:35162068 PMCid:PMC8834158
  5. AlMuhaissen S, Abu Libdeh A, ElKhatib Y, Alshayeb R, Jaara A, and Bardaweel SK (2023). Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and COVID-19: Is there a connection? Current Medical Research and Opinion, 39(8): 1119-1126. https://doi.org/10.1080/03007995.2023.2242244   [Google Scholar] PMid:37501626
  6. Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, and McDermott AB et al. (2020). Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. New England Journal of Medicine, 383(25): 2427-2438. https://doi.org/10.1056/NEJMoa2028436   [Google Scholar] PMid:32991794 PMCid:PMC7556339
  7. Andrade SAD, de Souza DA, Torres AL, de Lima CFG, Ebram MC, Celano RMG, and Chudzinski-Tavassi AM (2022). Pathophysiology of COVID-19: Critical role of hemostasis. Frontiers in Cellular and Infection Microbiology, 12: 896972. https://doi.org/10.3389/fcimb.2022.896972   [Google Scholar] PMid:35719336 PMCid:PMC9205169
  8. Aranow C (2011). Vitamin D and the immune system. Journal of Investigative Medicine, 59(6): 881-886. https://doi.org/10.2310/JIM.0b013e31821b8755   [Google Scholar] PMid:21527855 PMCid:PMC3166406
  9. Autier P, Mullie P, Macacu A, Dragomir M, Boniol M, Coppens K, Pizot C, and Boniol M (2017). Effect of vitamin D supplementation on non-skeletal disorders: A systematic review of meta-analyses and randomised trials. The Lancet Diabetes and Endocrinology, 5(12): 986-1004. https://doi.org/10.1016/S2213-8587(17)30357-1   [Google Scholar] PMid:29102433
  10. Bachman J (2013). Reverse-transcription PCR (rt-PCR). In: Lorsch J (Ed.), Methods in enzymology: 67-74. Volume 530, Academic Press, Cambridge, USA. https://doi.org/10.1016/B978-0-12-420037-1.00002-6   [Google Scholar] PMid:24034314
  11. Ball L, Silva PL, Giacobbe DR, Bassetti M, Zubieta-Calleja GR, Rocco PR, and Pelosi P (2022). Understanding the pathophysiology of typical acute respiratory distress syndrome and severe COVID-19. Expert Review of Respiratory Medicine, 16(4): 437-446. https://doi.org/10.1080/17476348.2022.2057300   [Google Scholar] PMid:35341424 PMCid:PMC9115784
  12. Barbagallo M and Dominguez LJ (2015). Magnesium and type 2 diabetes. World Journal of Diabetes, 6(10): 1152. https://doi.org/10.4239/wjd.v6.i10.1152   [Google Scholar] PMid:26322160 PMCid:PMC4549665
  13. Barrett JR, Belij-Rammerstorfer S, Dold C, Ewer KJ, Folegatti PM, Gilbride C, Halkerston R, Hill J, Jenkin D, Stockdale L, and Verheul MK et al. (2021). Phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19 with a booster dose induces multifunctional antibody responses. Nature Medicine, 27(2): 279-288. https://doi.org/10.1038/s41591-020-01179-4   [Google Scholar]
  14. Beck MA, Levander OA, and Handy J (2003). Selenium deficiency and viral infection. The Journal of Nutrition, 133(5): 1463S-1467S. https://doi.org/10.1093/jn/133.5.1463S   [Google Scholar] PMid:12730444
  15. Bergman P, Lindh ÅU, Björkhem-Bergman L, and Lindh JD (2013). Vitamin D and respiratory tract infections: A systematic review and meta-analysis of randomized controlled trials. PLOS ONE, 8(6): e65835. https://doi.org/10.1371/journal.pone.0065835   [Google Scholar] PMid:23840373 PMCid:PMC3686844
  16. Bermano G, Méplan C, Mercer DK, and Hesketh JE (2021). Selenium and viral infection: Are there lessons for COVID-19? British Journal of Nutrition, 125(6): 618-627. https://doi.org/10.1017/S0007114520003128   [Google Scholar] PMid:32758306 PMCid:PMC7503044
  17. Brigelius-Flohé R (2021). Vitamin E research: Past, now and future. Free Radical Biology and Medicine, 177: 381-390. https://doi.org/10.1016/j.freeradbiomed.2021.10.029   [Google Scholar] PMid:34756995
  18. Brosnahan SB, Jonkman AH, Kugler MC, Munger JS, and Kaufman DA (2020). COVID-19 and respiratory system disorders: Current knowledge, future clinical and translational research questions. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(11): 2586-2597. https://doi.org/10.1161/ATVBAHA.120.314515   [Google Scholar] PMid:32960072 PMCid:PMC7571846
  19. Calder PC, Carr AC, Gombart AF, and Eggersdorfer M (2020). Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients, 12(4): 1181. https://doi.org/10.3390/nu12041181   [Google Scholar] PMid:32340216 PMCid:PMC7230749
  20. Carrio A, Sampedro C, Sanchez-Lopez JL, Pimienta M, and Campoy P (2015). Automated low-cost smartphone-based lateral flow saliva test reader for drugs-of-abuse detection. Sensors, 15(11): 29569-29593. https://doi.org/10.3390/s151129569   [Google Scholar] PMid:26610513 PMCid:PMC4701349
  21. Chaigne-Delalande B, Li FY, O’Connor GM, Lukacs MJ, Jiang P, Zheng L, Shatzer A, Biancalana M, Pittaluga S, Matthews HF, and Jancel TJ et al. (2013). Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science, 341(6142): 186-191. https://doi.org/10.1126/science.1240094   [Google Scholar] PMid:23846901 PMCid:PMC3894782
  22. Chen Y, Yang W, Chen F, and Cui L (2022). COVID-19 and cognitive impairment: Neuroinvasive and blood‒brain barrier dysfunction. Journal of Neuroinflammation, 19(1): 222. https://doi.org/10.1186/s12974-022-02579-8   [Google Scholar] PMid:36071466 PMCid:PMC9450840
  23. Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O’Connell S, Bock KW, Minai M, and Nagata BM et al. (2020). Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. New England Journal of Medicine, 383(16): 1544-1555. https://doi.org/10.1056/NEJMoa2024671   [Google Scholar]
  24. Corman VM and Drosten C (2020). Authors’ response: SARS-CoV-2 detection by real-time RT-PCR. Eurosurveillance, 25(21): 2001035. https://doi.org/10.2807/1560-7917.ES.2020.25.21.2001035   [Google Scholar]
  25. Courtney JM and Bax A (2021). Hydrating the respiratory tract: An alternative explanation why masks lower severity of COVID-19. Biophysical Journal, 120(6): 994-1000. https://doi.org/10.1016/j.bpj.2021.02.002   [Google Scholar] PMid:33582134 PMCid:PMC7879047
  26. Damoiseaux J, Dotan A, Fritzler MJ, Bogdanos DP, Meroni PL, Roggenbuck D, Goldman M, Landegren N, Bastard P, Shoenfeld Y, and Conrad K (2022). Autoantibodies and SARS-CoV2 infection: The spectrum from association to clinical implication: Report of the 15th Dresden Symposium on Autoantibodies. Autoimmunity Reviews, 21(3): 103012. https://doi.org/10.1016/j.autrev.2021.103012   [Google Scholar] PMid:34896650 PMCid:PMC8656211
  27. De Giovanni N and Fucci N (2013). The current status of sweat testing for drugs of abuse: A review. Current Medicinal Chemistry, 20(4): 545-561. https://doi.org/10.2174/092986713804910139   [Google Scholar] PMid:23244520
  28. De la Fuente M, Sánchez C, Vallejo C, Díaz-Del Cerro E, Arnalich F, and Hernanz Á (2020). Vitamin C and vitamin C plus E improve the immune function in the elderly. Experimental Gerontology, 142: 111118. https://doi.org/10.1016/j.exger.2020.111118   [Google Scholar] PMid:33091525
  29. DeDiego ML, Nieto-Torres JL, Regla-Nava JA, Jimenez-Guardeño JM, Fernandez-Delgado R, Fett C, Castaño-Rodriguez C, Perlman S, and Enjuanes L (2014). Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. Journal of Virology, 88(2): 913-924. https://doi.org/10.1128/JVI.02576-13   [Google Scholar] PMid:24198408 PMCid:PMC3911641
  30. Di Stadio A, D’Ascanio L, La Mantia I, Ralli M, and Brenner MJ (2022). Parosmia after COVID-19: Olfactory training, neuroinflammation and distortions of smell. European Review for Medical and Pharmacological Sciences, 26(1): 1-3.   [Google Scholar]
  31. Ebadi M and Montano-Loza AJ (2020). Perspective: Improving vitamin D status in the management of COVID-19. European Journal of Clinical Nutrition, 74(6): 856-859. https://doi.org/10.1038/s41430-020-0661-0   [Google Scholar] PMid:32398871 PMCid:PMC7216123
  32. El Karoui K and De Vriese AS (2022). COVID-19 in dialysis: Clinical impact, immune response, prevention, and treatment. Kidney International, 101(5): 883-894. https://doi.org/10.1016/j.kint.2022.01.022   [Google Scholar] PMid:35176326 PMCid:PMC8842412
  33. Elbadawy HM, Khattab A, El‐Agamy DS, Eltahir HM, Alhaddad A, Aljohani FD, Almuzaini TM, Abouzied MM, and Aldhafiri A (2023). IL‐6 at the center of cytokine storm: Circulating inflammation mediators as biomarkers in hospitalized COVID‐19 patients. Journal of Clinical Laboratory Analysis, 37(7): e24881. https://doi.org/10.1002/jcla.24881   [Google Scholar] PMid:37096731 PMCid:PMC10220295
  34. Elmadfa I and Meyer AL (2019). The role of the status of selected micronutrients in shaping the immune function. Endocrine, Metabolic and Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine and Metabolic Disorders), 19(8): 1100-1115. https://doi.org/10.2174/1871530319666190529101816   [Google Scholar] PMid:31142256 PMCid:PMC7360912
  35. Elseidy SA, Awad AK, Vorla M, Fatima A, Elbadawy MA, Mandal D, and Mohamad T (2022). Cardiovascular complications in the post-acute COVID-19 syndrome (PACS). IJC Heart and Vasculature, 40: 101012. https://doi.org/10.1016/j.ijcha.2022.101012   [Google Scholar] PMid:35355927 PMCid:PMC8958273
  36. ElTohamy A, Hyun S, Macaranas AR, Chen JA, Stevens C, and Liu CH (2022). Testing positive, losing a loved one, and financial hardship: Real-world impacts of COVID-19 on US college student distress. Journal of Affective Disorders, 314: 357-364. https://doi.org/10.1016/j.jad.2022.07.022   [Google Scholar] PMid:35878829 PMCid:PMC9304338
  37. Fan Y, Zhao K, Shi ZL, and Zhou P (2019). Bat coronaviruses in China. Viruses, 11(3): 210. https://doi.org/10.3390/v11030210   [Google Scholar] PMid:30832341 PMCid:PMC6466186
  38. Filosto M, Cotti Piccinelli S, Gazzina S, Foresti C, Frigeni B, Servalli MC, Sessa M, Cosentino G, Marchioni E, Ravaglia S, and Briani C et al. (2022). Guillain‐Barré syndrome and COVID‐19: A 1‐year observational multicenter study. European Journal of Neurology, 29(11): 3358-3367. https://doi.org/10.1111/ene.15497   [Google Scholar] PMid:35837806 PMCid:PMC9349567
  39. Fiorentini D, Cappadone C, Farruggia G, and Prata C (2021). Magnesium: Biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients, 13(4): 1136. https://doi.org/10.3390/nu13041136   [Google Scholar] PMid:33808247 PMCid:PMC8065437
  40. Folayan MO, Ibigbami O, ElTantawi M, Abeldaño GF, Ara E, Ayanore MA, Ellakany P, Gaffar B, Al-Khanati NM, Idigbe I, and Ishabiyi AO et al. (2022). Factors associated with COVID-19 pandemic induced post-traumatic stress symptoms among adults living with and without HIV in Nigeria: A cross-sectional study. BMC Psychiatry, 22(1): 48. https://doi.org/10.1186/s12888-021-03617-0   [Google Scholar] PMid:35062920 PMCid:PMC8777174
  41. Galmés S, Serra F, and Palou A (2018). Vitamin E metabolic effects and genetic variants: A challenge for precision nutrition in obesity and associated disturbances. Nutrients, 10(12): 1919. https://doi.org/10.3390/nu10121919   [Google Scholar] PMid:30518135 PMCid:PMC6316334
  42. Garcia-Azorin D, Baykan B, Beghi E, Doheim MF, Fernandez-de-Las-Penas C, Gezegen H, Guekht A, Hoo FK, Santacatterina M, Sejvar J, and Tamborska AA et al. (2022). Timing of headache after COVID-19 vaccines and its association with cerebrovascular events: An analysis of 41,700 VAERS reports. Cephalalgia, 42(11-12): 1207-1217. https://doi.org/10.1177/03331024221099231   [Google Scholar] PMid:35514199
  43. Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, and Zhang YJ et al. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503(7477): 535-538. https://doi.org/10.1038/nature12711   [Google Scholar] PMid:24172901 PMCid:PMC5389864
  44. Gombart AF, Pierre A, and Maggini S (2020). A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients, 12(1): 236. https://doi.org/10.3390/nu12010236   [Google Scholar] PMid:31963293 PMCid:PMC7019735
  45. Gonzalez MJ, Berdiel M, Duconge J, Levy Th AI, and Morales-Borges R et al. (2018). High dose vitamin C and influenza: A case report. Journal of Orthomolecular Medicine, 33(3): 1-3.   [Google Scholar]
  46. Graham SP, McLean RK, Spencer AJ, Belij-Rammerstorfer S, Wright D, Ulaszewska M, Edwards JC, Hayes JW, Martini V, Thakur N, and Conceicao C et al. (2020). Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19. NPJ Vaccines, 5(1): 69. https://doi.org/10.1038/s41541-020-00221-3   [Google Scholar] PMid:32793398 PMCid:PMC7385486
  47. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, and Bhattoa HP (2020). Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 12(4): 988. https://doi.org/10.3390/nu12040988   [Google Scholar] PMid:32252338 PMCid:PMC7231123
  48. Guebre-Xabier M, Patel N, Tian JH, Zhou B, Maciejewski S, Lam K, Portnoff AD, Massare MJ, Frieman MB, Piedra PA, and Ellingsworth L et al. (2020). NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine, 38(50): 7892-7896. https://doi.org/10.1016/j.vaccine.2020.10.064   [Google Scholar] PMid:33139139 PMCid:PMC7584426
  49. Guillin OM, Vindry C, Ohlmann T, and Chavatte L (2019). Selenium, selenoproteins and viral infection. Nutrients, 11(9): 2101. https://doi.org/10.3390/nu11092101   [Google Scholar] PMid:31487871 PMCid:PMC6769590
  50. Hamedi KR, Loftus G, Traylor L, Goodwin R, and Arce S (2023). Comparison of COVID-19 vaccine-associated myocarditis and viral myocarditis pathology. Vaccines, 11(2): 362. https://doi.org/10.3390/vaccines11020362   [Google Scholar] PMid:36851240 PMCid:PMC9967770
  51. Hancock AS, Stairiker CJ, Boesteanu AC, Monzón-Casanova E, Lukasiak S, Mueller YM, Stubbs AP, García-Sastre A, Turner M, and Katsikis PD (2018). Transcriptome analysis of infected and bystander type 2 alveolar epithelial cells during influenza A virus infection reveals in vivo Wnt pathway downregulation. Journal of Virology, 92(21): e01325-18. https://doi.org/10.1128/JVI.01325-18   [Google Scholar] PMid:30111569 PMCid:PMC6189488
  52. Hanson PJ, Liu-Fei F, Ng C, Minato TA, Lai C, Hossain AR, Chan R, Grewal B, Singhera G, Rai H, and Hirota J et al. (2022). Characterization of COVID-19-associated cardiac injury: Evidence for a multifactorial disease in an autopsy cohort. Laboratory Investigation, 102(8): 814-825. https://doi.org/10.1038/s41374-022-00783-x   [Google Scholar] PMid:35437316 PMCid:PMC9015288
  53. Hardinge P and Murray JA (2019). Reduced false positives and improved reporting of loop-mediated isothermal amplification using quenched fluorescent primers. Scientific Reports, 9(1): 7400. https://doi.org/10.1038/s41598-019-43817-z   [Google Scholar] PMid:31089184 PMCid:PMC6517417
  54. He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, and Pham-Huy C (2013). Carbon nanotubes: Applications in pharmacy and medicine. BioMed Research International, 2013: 578290. https://doi.org/10.1155/2013/578290   [Google Scholar] PMid:24195076 PMCid:PMC3806157
  55. Hemilä H (2016). Vitamin E and the risk of pneumonia: Using the I2 statistic to quantify heterogeneity within a controlled trial. British Journal of Nutrition, 116(9): 1530-1536. https://doi.org/10.1017/S0007114516003408   [Google Scholar] PMid:27780487
  56. Hennion RM and Hill G (2015). The preparation of chicken kidney cell cultures for virus propagation. In: Maier HJ, Bickerton E, and Britton P (Eds.), Coronaviruses: Methods and protocols: 57–62. Springer, New York, USA. https://doi.org/10.1007/978-1-4939-2438-7_6   [Google Scholar] PMid:25720471 PMCid:PMC7122669
  57. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, and Müller MA et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2): 271-280. https://doi.org/10.1016/j.cell.2020.02.052   [Google Scholar] PMid:32142651 PMCid:PMC7102627
  58. Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, Xie JZ, Shen XR, Zhang YZ, Wang N, and Luo DS et al. (2017). Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLOS Pathogens, 13(11): e1006698. https://doi.org/10.1371/journal.ppat.1006698   [Google Scholar] PMid:29190287 PMCid:PMC5708621
  59. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, and Cheng Z et al. (2020a). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223): 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5   [Google Scholar] PMid:31986264
  60. Huang Q, Wu X, Zheng X, Luo S, Xu S, and Weng J (2020b). Targeting inflammation and cytokine storm in COVID-19. Pharmacological Research, 159: 105051. https://doi.org/10.1016/j.phrs.2020.105051   [Google Scholar] PMid:32603772 PMCid:PMC7320704
  61. Huang Z, Liu Y, Qi G, Brand D, and Zheng SG (2018). Role of vitamin A in the immune system. Journal of Clinical Medicine, 7(9): 258. https://doi.org/10.3390/jcm7090258   [Google Scholar] PMid:30200565 PMCid:PMC6162863
  62. Huerne K, Filion KB, Grad R, Ernst P, Gershon AS, and Eisenberg MJ (2023). Epidemiological and clinical perspectives of long COVID syndrome. American Journal of Medicine Open, 9: 100033. https://doi.org/10.1016/j.ajmo.2023.100033   [Google Scholar] PMid:36685609 PMCid:PMC9846887
  63. Hui DS and Zumla A (2019). Severe acute respiratory syndrome: Historical, epidemiologic, and clinical features. Infectious Disease Clinics, 33(4): 869-889. https://doi.org/10.1016/j.idc.2019.07.001   [Google Scholar] PMid:31668196 PMCid:PMC7127569
  64. Iovino L, Mazziotta F, Carulli G, Guerrini F, Morganti R, Mazzotti V, Maggi F, Macera L, Orciuolo E, Buda G, and Benedetti E et al. (2018). High-dose zinc oral supplementation after stem cell transplantation causes an increase of TRECs and CD4+ naïve lymphocytes and prevents TTV reactivation. Leukemia Research, 70: 20-24. https://doi.org/10.1016/j.leukres.2018.04.016   [Google Scholar] PMid:29747074
  65. Ivory K, Prieto E, Spinks C, Armah CN, Goldson AJ, Dainty JR, and Nicoletti C (2017). Selenium supplementation has beneficial and detrimental effects on immunity to influenza vaccine in older adults. Clinical Nutrition, 36(2): 407-415. https://doi.org/10.1016/j.clnu.2015.12.003   [Google Scholar] PMid:26803169 PMCid:PMC5381341
  66. Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, and Pruijssers AJ et al. (2020). An mRNA vaccine against SARS-CoV-2-Preliminary report. New England Journal of Medicine, 383(20): 1920-1931. https://doi.org/10.1056/NEJMoa2022483   [Google Scholar] PMid:32663912 PMCid:PMC7377258
  67. Jafary F, Jafari S, and Ganjalikhany MR (2021). In silico investigation of critical binding pattern in SARS-CoV-2 spike protein with angiotensin-converting enzyme 2. Scientific Reports, 11(1): 6927. https://doi.org/10.1038/s41598-021-86380-2   [Google Scholar] PMid:33767306 PMCid:PMC7994905
  68. Jiang Y, Rubin L, Peng T, Liu L, Xing X, Lazarovici P, and Zheng W (2022). Cytokine storm in COVID-19: From viral infection to immune responses, diagnosis and therapy. International Journal of Biological Sciences, 18(2): 459-472. https://doi.org/10.7150/ijbs.59272   [Google Scholar] PMid:35002503 PMCid:PMC8741849
  69. Jin Y, Ji W, Yang H, Chen S, Zhang W, and Duan G (2020). Endothelial activation and dysfunction in COVID-19: From basic mechanisms to potential therapeutic approaches. Signal Transduction and Targeted Therapy, 5: 293. https://doi.org/10.1038/s41392-020-00454-7   [Google Scholar] PMid:33361764 PMCid:PMC7758411
  70. Kampf G, Todt D, Pfaender S, and Steinmann E (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, 104(3): 246-251. https://doi.org/10.1016/j.jhin.2020.01.022   [Google Scholar] PMid:32035997 PMCid:PMC7132493
  71. Kauhanen L, Wan Mohd Yunus WM, Lempinen L, Peltonen K, Gyllenberg D, Mishina K, Gilbert S, Bastola K, Brown JS, and Sourander A (2023). A systematic review of the mental health changes of children and young people before and during the COVID-19 pandemic. European Child and Adolescent Psychiatry, 32: 995-1013. https://doi.org/10.1007/s00787-022-02060-0   [Google Scholar] PMid:35962147 PMCid:PMC9373888
  72. Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney-Clark S, Zhou H, and Smith G et al. (2020). Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. New England Journal of Medicine, 383(24): 2320-2332. https://doi.org/10.1056/NEJMoa2026920   [Google Scholar] PMid:32877576 PMCid:PMC7494251
  73. Kim Y, Kim H, Bae S, Choi J, Lim SY, Lee N, Kong JM, Hwang YI, Kang JS, and Lee WJ (2013). Vitamin C is an essential factor on the anti-viral immune responses through the production of interferon-α/β at the initial stage of influenza A virus (H3N2) infection. Immune Network, 13(2): 70-74. https://doi.org/10.4110/in.2013.13.2.70   [Google Scholar] PMid:23700397 PMCid:PMC3659258
  74. Komolmit P, Charoensuk K, Thanapirom K, Suksawatamnuay S, Thaimai P, Chirathaworn C, and Poovorawan Y (2017). Correction of vitamin D deficiency facilitated suppression of IP-10 and DPP IV levels in patients with chronic hepatitis C: A randomised double-blinded, placebo-control trial. PLOS ONE, 12(4): e0174608. https://doi.org/10.1371/journal.pone.0174608   [Google Scholar] PMid:28376103 PMCid:PMC5380326
  75. Krishnakumar B, Christopher J, Prasobh PS, Godbole S, Mehrotra A, Singhal A, Roy S, Bhattacharya K, Kolte N, Abhyankar MV, and Revankar S (2022). Resurgence of hypertension and cardiovascular diseases in patients recovered from COVID-19: An Indian perspective. Journal of Family Medicine and Primary Care, 11(6): 2589. https://doi.org/10.4103/jfmpc.jfmpc_973_21   [Google Scholar] PMid:36119181 PMCid:PMC9480725
  76. Kumar N, Ahmad S, Mahto M, Kumar A, and Singh PK (2022). Prognostic value of elevated cardiac and inflammatory biomarkers in patients with severe COVID-19: A single-center, retrospective study. Emergency and Critical Care Medicine, 2(3): 122-127. https://doi.org/10.1097/EC9.0000000000000057   [Google Scholar] PMid:37521815 PMCid:PMC9555554
  77. Lamb LE, Bartolone SN, Ward E, and Chancellor MB (2020). Rapid detection of novel coronavirus/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification. PLOS ONE, 15(6): e0234682. https://doi.org/10.1371/journal.pone.0234682   [Google Scholar] PMid:32530929 PMCid:PMC7292379
  78. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, and Zhang J et al. (2005). Bats are natural reservoirs of SARS-like coronaviruses. Science, 310(5748): 676-679. https://doi.org/10.1126/science.1118391   [Google Scholar] PMid:16195424
  79. Liu T, Wu D, Yan W, Wang X, Zhang X, Ma K, Chen H, Zeng Z, Qin Y, Wang H, and Xing M et al. (2022). Twelve-month systemic consequences of coronavirus disease 2019 (COVID-19) in patients discharged from hospital: A prospective cohort study in Wuhan, China. Clinical Infectious Diseases, 74(11): 1953-1965. https://doi.org/10.1093/cid/ciab703   [Google Scholar] PMid:34390330 PMCid:PMC9187317
  80. Liu W, Liu L, Kou G, Zheng Y, Ding Y, Ni W, Wang Q, Tan L, Wu W, Tang S, and Xiong Z et al. (2020). Evaluation of nucleocapsid and spike protein-based enzyme-linked immunosorbent assays for detecting antibodies against SARS-CoV-2. Journal of Clinical Microbiology, 58(6): e00461-20. https://doi.org/10.1128/JCM.00461-20   [Google Scholar] PMid:32229605 PMCid:PMC7269413
  81. Liu-Fei F, McKinney J, and McManus BM (2023). Viral heart disease: Diagnosis, management and mechanisms. Canadian Journal of Cardiology, 39(6): 829–838. https://doi.org/10.1016/j.cjca.2023.03.020   [Google Scholar] PMid:37003416
  82. Low RN, Low RJ, and Akrami A (2023). A review of cytokine-based pathophysiology of long COVID symptoms. Frontiers in Medicine, 10: 1011936. https://doi.org/10.3389/fmed.2023.1011936   [Google Scholar] PMid:37064029 PMCid:PMC10103649
  83. Ma X, Bi S, Wang Y, Chi X, and Hu S (2019). Combined adjuvant effect of ginseng stem-leaf saponins and selenium on immune responses to a live bivalent vaccine of Newcastle disease virus and infectious bronchitis virus in chickens. Poultry Science, 98(9): 3548-3556. https://doi.org/10.3382/ps/pez207   [Google Scholar] PMid:31220864 PMCid:PMC7107245
  84. Maares M and Haase H (2016). Zinc and immunity: An essential interrelation. Archives of Biochemistry and Biophysics, 611: 58-65. https://doi.org/10.1016/j.abb.2016.03.022   [Google Scholar] PMid:27021581
  85. Magambo KA, Kalluvya SE, Kapoor SW, Seni J, Chofle AA, Fitzgerald DW, and Downs JA (2014). Utility of urine and serum lateral flow assays to determine the prevalence and predictors of cryptococcal antigenemia in HIV‐positive outpatients beginning antiretroviral therapy in Mwanza, Tanzania. Journal of the International AIDS Society, 17(1): 19040. https://doi.org/10.7448/IAS.17.1.19040   [Google Scholar] PMid:25109284 PMCid:PMC4127809
  86. Maggini S, Wintergerst ES, Beveridge S, and Hornig DH (2007). Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. British Journal of Nutrition, 98(S1): S29-S35. https://doi.org/10.1017/S0007114507832971   [Google Scholar] PMid:17922955
  87. Maio N, Lafont BA, Sil D, Li Y, Bollinger Jr JM, Krebs C, Pierson TC, Linehan WM, and Rouault TA (2021). Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science, 373(6551): 236-241. https://doi.org/10.1126/science.abi5224   [Google Scholar] PMid:34083449 PMCid:PMC8892629
  88. Marini JJ and Gattinoni L (2020). Management of COVID-19 respiratory distress. JAMA, 323(22): 2329-2330. https://doi.org/10.1001/jama.2020.6825   [Google Scholar] PMid:32329799
  89. Marques LM, Marques SR, Costa O, Freitas E, Machado Á, Marques L, and Marques S (2022). COVID-19-associated encephalitis: Two case reports. Cureus, 14(3): e23243. https://doi.org/10.7759/cureus.23243   [Google Scholar]
  90. Mawson AR (2013). Role of fat-soluble vitamins A and D in the pathogenesis of influenza: A new perspective. ISRN Infectious Diseases, 2013: 246737. https://doi.org/10.5402/2013/246737   [Google Scholar]
  91. Mazumder S, Taneja S, Bhatia K, Yoshida S, Kaur J, Dube B, Toteja GS, Bahl R, Fontaine O, Martines J, and Bhandari N (2015). Efficacy of early neonatal supplementation with vitamin A to reduce mortality in infancy in Haryana, India (Neovita): A randomised, double-blind, placebo-controlled trial. The Lancet, 385(9975): 1333-1342. https://doi.org/10.1016/S0140-6736(14)60891-6   [Google Scholar] PMid:25499546
  92. Miroliaee AE, Salamzadeh J, Shokouhi S, and Sahraei Z (2018). The study of vitamin D administration effect on CRP and Interleukin-6 as prognostic biomarkers of ventilator associated pneumonia. Journal of Critical Care, 44: 300-305. https://doi.org/10.1016/j.jcrc.2017.08.040   [Google Scholar] PMid:29248753
  93. Mohamadi MH, Abbasimoghaddam S, Shekartabar A, Heidary M, and Khoshnood S (2022). Neurological manifestations in patients with COVID-19: A systematic review and meta-analysis. Journal of Clinical Laboratory Analysis, 36(5): e24403-e24403. https://doi.org/10.1002/jcla.24403   [Google Scholar] PMid:35385200 PMCid:PMC9102520
  94. Mohammed RN, Tamjidifar R, Rahman HS, Adili A, Ghoreishizadeh S, Saeedi H, Thangavelu L, Shomali N, Aslaminabad R, Marofi F, and Tahavvori M et al. (2022). A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19). Cell Communication and Signaling, 20: 79. https://doi.org/10.1186/s12964-022-00856-w   [Google Scholar] PMid:35655192 PMCid:PMC9162381
  95. Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, Funk CJ, Manzer R, Miura TA, Pearson LD, and Holmes KV et al. (2008). SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology, 372(1): 127-135. https://doi.org/10.1016/j.virol.2007.09.045   [Google Scholar] PMid:18022664 PMCid:PMC2312501
  96. Nonnecke BJ, McGill JL, Ridpath JF, Sacco RE, Lippolis JD, and Reinhardt TA (2014). Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. Journal of Dairy Science, 97(9): 5566-5579. https://doi.org/10.3168/jds.2014-8293   [Google Scholar] PMid:25022687
  97. Pae M and Wu D (2017). Nutritional modulation of age-related changes in the immune system and risk of infection. Nutrition Research, 41: 14-35. https://doi.org/10.1016/j.nutres.2017.02.001   [Google Scholar] PMid:28577789
  98. Patel N, Penkert RR, Jones BG, Sealy RE, Surman SL, Sun Y, Tang L, DeBeauchamp J, Webb A, Richardson J, and Heine R et al. (2019). Baseline serum vitamin A and D levels determine benefit of oral vitamin A&D supplements to humoral immune responses following pediatric influenza vaccination. Viruses, 11(10): 907. https://doi.org/10.3390/v11100907   [Google Scholar] PMid:31575021 PMCid:PMC6832482
  99. Penninx BW, Benros ME, Klein RS, and Vinkers CH (2022). How COVID-19 shaped mental health: From infection to pandemic effects. Nature Medicine, 28(10): 2027-2037. https://doi.org/10.1038/s41591-022-02028-2   [Google Scholar] PMid:36192553 PMCid:PMC9711928
  100. Pillonel T, Scherz V, Jaton K, Greub G, and Bertelli C (2020). SARS-CoV-2 detection by real-time RT-PCR. Eurosurveillance, 25(21): 2000880. https://doi.org/10.2807/1560-7917.ES.2020.25.21.2000880   [Google Scholar] PMid:32489175 PMCid:PMC7268274
  101. Popovic LM, Mitic NR, Miric D, Bisevac B, Miric M, and Popovic B (2015). Influence of vitamin C supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise. Oxidative Medicine and Cellular Longevity, 2015: 295497. https://doi.org/10.1155/2015/295497   [Google Scholar] PMid:25802681 PMCid:PMC4352897
  102. Qian Z, Travanty EA, Oko L, Edeen K, Berglund A, Wang J, and Mason RJ (2013). Innate immune response of human alveolar type ii cells infected with severe acute respiratory syndrome–coronavirus. American Journal of Respiratory Cell and Molecular Biology, 48(6): 742-748. https://doi.org/10.1165/rcmb.2012-0339OC   [Google Scholar] PMid:23418343 PMCid:PMC3727876
  103. Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, Voysey M, Aley PK, Angus B, Babbage G, and Belij-Rammerstorfer S et al. (2020). Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): A single-blind, randomised, controlled, phase 2/3 trial. The Lancet, 396(10267): 1979-1993. https://doi.org/10.1016/S0140-6736(20)32466-1   [Google Scholar]
  104. Rayman MP (2012). Selenium and human health. The Lancet, 379(9822): 1256-1268. https://doi.org/10.1016/S0140-6736(11)61452-9   [Google Scholar] PMid:22381456
  105. Re VL, Dutcher SK, Connolly JG, Perez-Vilar S, Carbonari DM, DeFor TA, Djibo DA, Harrington LB, Hou L, Hennessy S, and Hubbard RA et al. (2022). Association of COVID-19 vs influenza with risk of arterial and venous thrombotic events among hospitalized patients. JAMA, 328(7): 637-651. https://doi.org/10.1001/jama.2022.13072   [Google Scholar] PMid:35972486 PMCid:PMC9382447
  106. Read SA, Obeid S, Ahlenstiel C, and Ahlenstiel G (2019). The role of zinc in antiviral immunity. Advances in Nutrition, 10(4): 696-710. https://doi.org/10.1093/advances/nmz013   [Google Scholar] PMid:31305906 PMCid:PMC6628855
  107. Reeves PG and DeMars LC (2006). Signs of iron deficiency in copper-deficient rats are not affected by iron supplements administered by diet or by injection. The Journal of Nutritional Biochemistry, 17(9): 635-642. https://doi.org/10.1016/j.jnutbio.2006.04.004   [Google Scholar] PMid:16781861
  108. Rejnmark L, Bislev LS, Cashman KD, Eiríksdottir G, Gaksch M, Grübler M, Grimnes G, Gudnason V, Lips P, Pilz S, and Van Schoor NM et al. (2017). Non-skeletal health effects of vitamin D supplementation: A systematic review on findings from meta-analyses summarizing trial data. PLOS ONE, 12(7): e0180512. https://doi.org/10.1371/journal.pone.0180512   [Google Scholar] PMid:28686645 PMCid:PMC5501555
  109. Rohrman BA, Leautaud V, Molyneux E, and Richards-Kortum RR (2012). A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLOS ONE, 7(9): e45611. https://doi.org/10.1371/journal.pone.0045611   [Google Scholar] PMid:23029134 PMCid:PMC3448666
  110. Rojas M, Herrán M, Ramírez-Santana C, Leung PS, Manuel-Anaya J, Ridgway WM, and Gershwin ME (2023). Molecular mimicry and autoimmunity in the time of COVID-19. Journal of Autoimmunity, 139: 103070. https://doi.org/10.1016/j.jaut.2023.103070   [Google Scholar] PMid:37390745 PMCid:PMC10258587
  111. Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM, Stoop J, Tete S, Van Damme W, Leroux-Roels I, and Berghmans PJ et al. (2021). Interim results of a phase 1–2a trial of Ad26. COV2. S COVID-19 vaccine. New England Journal of Medicine, 384(19): 1824-1835. https://doi.org/10.1056/NEJMoa2034201   [Google Scholar] PMid:33440088 PMCid:PMC7821985
  112. Sanders R, Mason DJ, Foy CA, and Huggett JF (2014). Considerations for accurate gene expression measurement by reverse transcription quantitative PCR when analysing clinical samples. Analytical and Bioanalytical Chemistry, 406: 6471-6483. https://doi.org/10.1007/s00216-014-7857-x   [Google Scholar] PMid:24858468 PMCid:PMC4182594
  113. Santoro L, Zaccone V, Falsetti L, Ruggieri V, Danese M, Miro C, Di Giorgio A, Nesci A, D’Alessandro A, Moroncini G, and Santoliquido A (2023). Role of endothelium in cardiovascular sequelae of long COVID. Biomedicines, 11(8): 2239. https://doi.org/10.3390/biomedicines11082239   [Google Scholar] PMid:37626735 PMCid:PMC10452509
  114. Santos CFD, Sakai VT, Machado MAAM, Schippers DN, and Greene AS (2004). Reverse transcription and polymerase chain reaction: Principles and applications in dentistry. Journal of Applied Oral Science, 12(1): 1-11. https://doi.org/10.1590/S1678-77572004000100002   [Google Scholar] PMid:21365144
  115. Sethuraman G, Sreenivas V, Yenamandra VK, Gupta N, Sharma VK, Marwaha RK, Bhari N, Irshad M, Kabra M, and Thulkar S (2015). Threshold levels of 25‐hydroxyvitamin D and parathyroid hormone for impaired bone health in children with congenital ichthyosis and type IV and V skin. British Journal of Dermatology, 172(1): 208-214. https://doi.org/10.1111/bjd.13131   [Google Scholar] PMid:24864027
  116. Sette A and Crotty S (2022). Immunological memory to SARS‐CoV‐2 infection and COVID‐19 vaccines. Immunological Reviews, 310(1): 27-46. https://doi.org/10.1111/imr.13089   [Google Scholar] PMid:35733376 PMCid:PMC9349657
  117. Shahi S, Vahed SZ, Fathi N, and Sharifi S (2018). Polymerase chain reaction (PCR)-based methods: Promising molecular tools in dentistry. International Journal of Biological Macromolecules, 117: 983-992. https://doi.org/10.1016/j.ijbiomac.2018.05.085   [Google Scholar] PMid:29778881
  118. Sharifkashani S, Bafrani MA, Khaboushan AS, Pirzadeh M, Kheirandish A, Yavarpour_Bali H, Hessami A, Saghazadeh A, and Rezaei N (2020). Angiotensin-converting enzyme 2 (ACE2) receptor and SARS-CoV-2: Potential therapeutic targeting. European Journal of Pharmacology, 884: 173455. https://doi.org/10.1016/j.ejphar.2020.173455   [Google Scholar] PMid:32745604 PMCid:PMC7834210
  119. Shi Q, Huang J, Sun Y, Yin M, Hu M, Hu X, Zhang Z, and Zhang G (2018). Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced Raman spectroscopy for ultrasensitive detection of antibiotics in milk. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 197: 107-113. https://doi.org/10.1016/j.saa.2017.11.045   [Google Scholar] PMid:29195715
  120. Siripanthong B, Asatryan B, Hanff TC, Chatha SR, Khanji MY, Ricci F, Muser D, Ferrari VA, Nazarian S, Santangeli P, and Deo R et al. (2022). The pathogenesis and long-term consequences of COVID-19 cardiac injury. Basic to Translational Science, 7(3_Part_1): 294-308. https://doi.org/10.1016/j.jacbts.2021.10.011   [Google Scholar] PMid:35165665 PMCid:PMC8828362
  121. Sojka M, Drelich-Zbroja A, Kuczyńska M, Cheda M, Dąbrowska I, Kopyto E, Halczuk I, Zbroja M, Cyranka W, and Jargiełło T (2022). Ischemic and hemorrhagic cerebrovascular events related to COVID-19 coagulopathy and hypoxemia. International Journal of Environmental Research and Public Health, 19(18): 11823. https://doi.org/10.3390/ijerph191811823   [Google Scholar] PMid:36142094 PMCid:PMC9517511
  122. Soroka M, Wasowicz B, and Rymaszewska A (2021). Loop-mediated isothermal amplification (LAMP): The better sibling of PCR? Cells, 10(8): 1931. https://doi.org/10.3390/cells10081931   [Google Scholar] PMid:34440699 PMCid:PMC8393631
  123. Stern B, Monteleone P, and Zoldan J (2022). SARS‐CoV‐2 spike protein induces endothelial dysfunction in 3D engineered vascular networks. Journal of Biomedical Materials Research Part A, 112(4): 524-533. https://doi.org/10.1002/jbm.a.37543   [Google Scholar] PMid:37029655
  124. Sun S, Li E, Zhao G, Tang J, Zuo Q, Cai L, Xu C, Sui C, Ou Y, Liu C, and Li H et al. (2023). Respiratory mucosal vaccination of peptide-poloxamine-DNA nanoparticles provides complete protection against lethal SARS-CoV-2 challenge. Biomaterials, 292: 121907. https://doi.org/10.1016/j.biomaterials.2022.121907   [Google Scholar] PMid:36436305 PMCid:PMC9673044
  125. Taga A and Lauria G (2022). COVID‐19 and the peripheral nervous system. A 2‐year review from the pandemic to the vaccine era. Journal of the Peripheral Nervous System, 27(1): 4-30. https://doi.org/10.1111/jns.12482   [Google Scholar] PMid:35137496 PMCid:PMC9115278
  126. Takao M and Ohira M (2023). Neurological post‐acute sequelae of SARS‐CoV‐2 infection. Psychiatry and Clinical Neurosciences, 77(2): 72-83. https://doi.org/10.1111/pcn.13481   [Google Scholar] PMid:36148558 PMCid:PMC9538807
  127. Tan CW, Ho LP, Kalimuddin S, Cherng BP, Teh YE, Thien SY, Wong HM, Tern PJ, Chandran M, Chay JW, and Nagarajan C et al. (2020). Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition, 79: 111017. https://doi.org/10.1016/j.nut.2020.111017   [Google Scholar] PMid:33039952 PMCid:PMC7832811
  128. Tang NL, Chan PK, Wong CK, To KF, Wu AK, Sung YM, Hui DS, Sung JJ, and Lam CW (2005). Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clinical Chemistry, 51(12): 2333-2340. https://doi.org/10.1373/clinchem.2005.054460   [Google Scholar] PMid:16195357 PMCid:PMC7108146
  129. Te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, and van Hemert MJ (2010). Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLOS Pathogens, 6(11): e1001176. https://doi.org/10.1371/journal.ppat.1001176   [Google Scholar] PMid:21079686 PMCid:PMC2973827
  130. Thapa J, Maharjan B, Malla M, Fukushima Y, Poudel A, Pandey BD, Hyashida K, Gordon SV, Nakajima C, and Suzuki Y (2019). Direct detection of Mycobacterium tuberculosis in clinical samples by a dry methyl green loop-mediated isothermal amplification (LAMP) method. Tuberculosis, 117: 1-6. https://doi.org/10.1016/j.tube.2019.05.004   [Google Scholar] PMid:31378262
  131. Tian JH, Patel N, Haupt R, Zhou H, Weston S, Hammond H, Logue J, Portnoff AD, Norton J, Guebre-Xabier M, and Zhou B et al. (2021). SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nature Communications, 12(1): 372. https://doi.org/10.1038/s41467-020-20653-8   [Google Scholar] PMid:33446655 PMCid:PMC7809486
  132. Timpau AS, Miftode RS, Leca D, Timpau R, Miftode IL, Petris AO, Costache II, Mitu O, Nicolae A, Oancea A, and Jigoranu A et al. (2022). A real Pandora’s box in pandemic times: A narrative review on the acute cardiac injury due to COVID-19. Life, 12(7): 1085. https://doi.org/10.3390/life12071085   [Google Scholar] PMid:35888173 PMCid:PMC9318707
  133. Truwit JD, Hite RD, Morris PE, DeWilde C, Priday A, Fisher B, Thacker LR, Natarajan R, Brophy DF, Sculthorpe R, and Nanchal R et al. (2019). Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI randomized clinical trial. JAMA, 322(13): 1261-1270. https://doi.org/10.1001/jama.2019.11825   [Google Scholar] PMid:31573637 PMCid:PMC6777268
  134. Tudoran C, Velimirovici DE, Berceanu-Vaduva DM, Rada M, Voiţă-Mekeres F, and Tudoran M (2022). Increased susceptibility for thromboembolic events versus high bleeding risk associated with COVID-19. Microorganisms, 10(9): 1738. https://doi.org/10.3390/microorganisms10091738   [Google Scholar] PMid:36144340 PMCid:PMC9505654
  135. Tyagi K, Rai P, Gautam A, Kaur H, Kapoor S, Suttee A, Jaiswal PK, Sharma A, Singh G, and Barnwal RP (2023). Neurological manifestations of SARS-CoV-2: Complexity, mechanism and associated disorders. European Journal of Medical Research, 28: 307. https://doi.org/10.1186/s40001-023-01293-2   [Google Scholar] PMid:37649125 PMCid:PMC10469568
  136. Van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, Avanzato VA, Bushmaker T, Flaxman A, Ulaszewska M, and Feldmann F et al. (2020). ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, 586(7830): 578-582. https://doi.org/10.1038/s41586-020-2608-y   [Google Scholar] PMid:32731258 PMCid:PMC8436420
  137. Vaniprabha A, Logeshwaran J, Kiruthiga T, and Shah KB (2022). Examination of the effects of long-term COVID-19 impacts on patients with neurological disabilities using a neuro machine learning model. BOHR International Journal of Neurology and Neuroscience, 1(1): 21-28. https://doi.org/10.54646/bijnn.2023.03   [Google Scholar]
  138. Vankadari N and Wilce JA (2020). Emerging COVID-19 coronavirus: Glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerging Microbes and Infections, 9(1): 601-604. https://doi.org/10.1080/22221751.2020.1739565   [Google Scholar] PMid:32178593 PMCid:PMC7103712
  139. Veleri S (2022). Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients. Experimental Brain Research, 240(1): 9-25. https://doi.org/10.1007/s00221-021-06244-z   [Google Scholar] PMid:34694467 PMCid:PMC8543422
  140. Vestad B, Ueland T, Lerum TV, Dahl TB, Holm K, Barratt‐Due A, Kåsine T, Dyrhol‐Riise AM, Stiksrud B, Tonby K, and Hoel H et al. (2022). Respiratory dysfunction three months after severe COVID‐19 is associated with gut microbiota alterations. Journal of Internal Medicine, 291(6): 801-812. https://doi.org/10.1111/joim.13458   [Google Scholar] PMid:35212063 PMCid:PMC9115297
  141. Vianello A, Guarnieri G, Braccioni F, Lococo S, Molena B, Cecchetto A, Giraudo C, Bertagna De Marchi L, Caminati M, and Senna G (2022). The pathogenesis, epidemiology and biomarkers of susceptibility of pulmonary fibrosis in COVID-19 survivors. Clinical Chemistry and Laboratory Medicine, 60(3): 307-316. https://doi.org/10.1515/cclm-2021-1021   [Google Scholar] PMid:34783228
  142. Voysey M, Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, Angus B, Baillie VL, Barnabas SL, Bhorat QE, and Bibi S et al. (2021). Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. The Lancet, 397(10269): 99-111. https://doi.org/10.1016/S0140-6736(20)32661-1   [Google Scholar]
  143. Walsh EE, Frenck Jr RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, and Swanson KA et al. (2020). Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. New England Journal of Medicine, 383(25): 2439-2450. https://doi.org/10.1056/NEJMoa2027906   [Google Scholar] PMid:33053279 PMCid:PMC7583697
  144. Wan Y, Shang J, Graham R, Baric RS, and Li F (2020). Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology, 94(7): 10-1128. https://doi.org/10.1128/JVI.00127-20   [Google Scholar] PMid:31996437 PMCid:PMC7081895
  145. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, and Zhao Y et al. (2020a). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA, 323(11): 1061-1069. https://doi.org/10.1001/jama.2020.1585   [Google Scholar] PMid:32031570 PMCid:PMC7042881
  146. Wang DG, Brewster JD, Paul M, and Tomasula PM (2015). Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification. Molecules, 20(4): 6048-6059. https://doi.org/10.3390/molecules20046048   [Google Scholar] PMid:25853320 PMCid:PMC6272222
  147. Wang F, Kream RM, and Stefano GB (2020b). Long-term respiratory and neurological sequelae of COVID-19. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 26: e928996-1. https://doi.org/10.12659/MSM.928996   [Google Scholar]
  148. Weinheimer VK, Becher A, Tönnies M, Holland G, Knepper J, Bauer TT, Schneider P, Neudecker J, Rückert JC, Szymanski K, and Temmesfeld-Wollbrueck B et al. (2012). Influenza A viruses target type II pneumocytes in the human lung. The Journal of Infectious Diseases, 206(11): 1685-1694. https://doi.org/10.1093/infdis/jis455   [Google Scholar] PMid:22829640 PMCid:PMC7107318
  149. Wessels I, Fischer HJ, and Rink L (2021). Dietary and physiological effects of zinc on the immune system. Annual Review of Nutrition, 41(1): 133-175. https://doi.org/10.1146/annurev-nutr-122019-120635   [Google Scholar] PMid:34255547
  150. Wessling-Resnick M (2018). Crossing the iron gate: Why and how transferrin receptors mediate viral entry. Annual Review of Nutrition, 38(1): 431-458. https://doi.org/10.1146/annurev-nutr-082117-051749   [Google Scholar] PMid:29852086 PMCid:PMC6743070
  151. Whitsett JA (2018). Airway epithelial differentiation and mucociliary clearance. Annals of the American Thoracic Society, 15(Supplement 3): S143-S148. https://doi.org/10.1513/AnnalsATS.201802-128AW   [Google Scholar] PMid:30431340 PMCid:PMC6322033
  152. Widge AT, Rouphael NG, Jackson LA, Anderson EJ, Roberts PC, Makhene M, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, and McDermott AB et al. (2021). Durability of responses after SARS-CoV-2 mRNA-1273 vaccination. New England Journal of Medicine, 384(1): 80-82. https://doi.org/10.1056/NEJMc2032195   [Google Scholar] PMid:33270381 PMCid:PMC7727324
  153. Wu J and Zha P (2020). Treatment strategies for reducing damages to lungs in coronavirus and other lung infections. https://doi.org/10.2139/ssrn.3533279   [Google Scholar]
  154. Xu Y, Liu Y, Wu Y, Xia X, Liao Y, and Li Q (2014). Fluorescent probe-based lateral flow assay for multiplex nucleic acid detection. Analytical Chemistry, 86(12): 5611-5614. https://doi.org/10.1021/ac5010458   [Google Scholar] PMid:24892496
  155. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, and Tai Y et al. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8(4): 420-422. https://doi.org/10.1016/S2213-2600(20)30076-X   [Google Scholar] PMid:32085846
  156. Yang Z, Xu G, Reboud J, Kasprzyk-Hordern B, and Cooper JM (2017). Monitoring genetic population biomarkers for wastewater-based epidemiology. Analytical Chemistry, 89(18): 9941-9945. https://doi.org/10.1021/acs.analchem.7b02257   [Google Scholar] PMid:28814081
  157. Yong SJ and Liu S (2022). Proposed subtypes of post‐COVID‐19 syndrome (or long‐COVID) and their respective potential therapies. Reviews in Medical Virology, 32(4): e2315. https://doi.org/10.1002/rmv.2315   [Google Scholar] PMid:34888989
  158. Zdrenghea MT, Makrinioti H, Bagacean C, Bush A, Johnston SL, and Stanciu LA (2017). Vitamin D modulation of innate immune responses to respiratory viral infections. Reviews in Medical Virology, 27(1): e1909. https://doi.org/10.1002/rmv.1909   [Google Scholar] PMid:27714929
  159. Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, Han W, Chen Z, Tang R, Yin W, and Chen X et al. (2021). Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet Infectious Diseases, 21(2): 181-192. https://doi.org/10.1016/S1473-3099(20)30843-4   [Google Scholar] PMid:33217362
  160. Zhang Z, Yao W, Wang Y, Long C, and Fu X (2020). Wuhan and Hubei COVID-19 mortality analysis reveals the critical role of timely supply of medical resources. Journal of Infection, 81(1): 147-178. https://doi.org/10.1016/j.jinf.2020.03.018   [Google Scholar] PMCid:PMC7163181
  161. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, and Guan L et al. (2020b). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. The Lancet, 395(10229): 1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3   [Google Scholar] PMid:32171076
  162. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, and Chen HD et al. (2020a). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798): 270-273. https://doi.org/10.1038/s41586-020-2012-7   [Google Scholar] PMid:32015507 PMCid:PMC7095418
  163. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, and Niu P et al. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8): 727-733. https://doi.org/10.1056/NEJMoa2001017   [Google Scholar] PMid:31978945 PMCid:PMC7092803
  164. Zirpe KG, Dixit S, Kulkarni AP, Sapra H, Kakkar G, Gupta R, Bansal AR, Garg A, Dash SK, Gurnani A, and Khan A et al. (2020). Pathophysiological mechanisms and neurological manifestations in COVID-19. Indian Journal of Critical Care Medicine: Peer-Reviewed, Official Publication of Indian Society of Critical Care Medicine, 24(10): 975-980. https://doi.org/10.5005/jp-journals-10071-23592   [Google Scholar] PMid:33281325 PMCid:PMC7689109