International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 2 (February 2024), Pages: 118-127

----------------------------------------------

 Original Research Paper

Effect of homogeneous generalized thermoelasticity on semiconductor layer under magnetic field on Green and Naghdi model without energy dissipation

 Author(s): 

 Mohamed H. Hendy 1, 2, *, Alaa Kamal Khamis 1

 Affiliation(s):

 1Department of Mathematics, Faculty of Science, Northern Border University, Arar, Saudi Arabia
 2Department of Mathematics, Faculty of Science, Al Arish University, Al Arish, Egypt

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-1919-1647

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.02.014

 Abstract

This paper aims to explore the impact of viscosity and time on the spread of thermoelastic waves within a uniform and isotropic three-dimensional medium subject to a thermal load on its surface. This study utilizes the temperature-rate-dependent thermoelasticity based on the GN model, specifically applying the GN II model of generalized thermoelasticity, which does not account for energy dissipation. The normal mode analysis technique is employed to address the non-dimensional coupled field equations, yielding precise formulas for displacement, stress, temperature distribution, and strain. This issue is further illustrated by graphically depicting the field variables for a material similar to copper alongside the corresponding results. Comparative analyses of numerical data, with and without considering viscosity effects, suggest that the wave propagation speed will be limited.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Thermo viscoelasticity, GN II model, Energy dissipation, Normal mode analysis, State-space method, Three-dimensional medium

 Article history

 Received 9 September 2023, Received in revised form 14 January 2024, Accepted 28 January 2024

 Acknowledgment 

The authors gratefully acknowledge the approval and support of this research study by the Grant No. SCIA-2022-11-1256 from the Deanship of Scientific Research in Northern Border University, Arar, KSA.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Hendy MH and Khamis AK (2024). Effect of homogeneous generalized thermoelasticity on semiconductor layer under magnetic field on Green and Naghdi model without energy dissipation. International Journal of Advanced and Applied Sciences, 11(2): 118-127

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 

 Tables

 Table 1 

----------------------------------------------   

 References (37)

  1. Abd-Alla AM and Abo-Dahab SM (2009). Time-harmonic sources in a generalized magneto-thermo-viscoelastic continuum with and without energy dissipation. Applied Mathematical Modelling, 33(5): 2388-2402. https://doi.org/10.1016/j.apm.2008.07.008   [Google Scholar]
  2. Abd-Alla AN, Yahia AA, and Abo-Dahab SM (2003). On the reflection of the generalized magneto-thermo-viscoelastic plane waves. Chaos, Solitons and Fractals, 16(2): 211-231. https://doi.org/10.1016/S0960-0779(02)00170-4   [Google Scholar]
  3. Abouelregal AE (2019). Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Materials Research Express, 6(11): 116535. https://doi.org/10.1088/2053-1591/ab447f   [Google Scholar]
  4. Aldawody DA, Hendy MH, and Ezzat MA (2019). Fractional Green–Naghdi theory for thermoelectric MHD. Waves in Random and Complex Media, 29(4): 631-644. https://doi.org/10.1080/17455030.2018.1459061   [Google Scholar]
  5. Amin MM, Hendy MH, and Ezzat MA (2022). On the memory-dependent derivative electric-thermoelastic wave characteristics in the presence of a continuous line heat source. International Journal of Advanced and Applied Sciences 9(8): 1-8. https://doi.org/10.21833/ijaas.2022.08.001   [Google Scholar]
  6. Bahar LY and Hetnarski RB (1978). State space approach to thermoelasticity. Journal of Thermal Stresses, 1(1): 135-145. https://doi.org/10.1080/01495737808926936   [Google Scholar]
  7. Biot MA (1956). Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 27(3): 240-253. https://doi.org/10.1063/1.1722351   [Google Scholar]
  8. Chandrasekharaiah D (1996). One-dimensional wave propagation in the linear theory of thermoelasticity without energy dissipation. Journal of Thermal Stresses, 19(8): 695-710. https://doi.org/10.1080/01495739608946202   [Google Scholar]
  9. Chandrasekharaiah DS (1998). Hyperbolic thermoelasticity: A review of recent literature. Applied Mechanics Reviews, 51(12): 705-729. https://doi.org/10.1115/1.3098984   [Google Scholar]
  10. De Sciarra FM and Salerno M (2014). On thermodynamic functions in thermoelasticity without energy dissipation. European Journal of Mechanics-A/Solids, 46: 84-95. https://doi.org/10.1016/j.euromechsol.2014.02.007   [Google Scholar]
  11. Deswal S and Kalkal K (2011). A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion. International Journal of Thermal Sciences, 50(5): 749-759. https://doi.org/10.1016/j.ijthermalsci.2010.11.016   [Google Scholar]
  12. Dhaliwal RS and Sherief HH (1980). Generalized thermoelasticity for anisotropic media. Quarterly of Applied Mathematics, 38: 1-8. https://doi.org/10.1090/qam/575828   [Google Scholar]
  13. Dhaliwal RS and Wang J (1995). A heat-flux dependent theory of thermoelasticity with voids. Acta Mechanica, 110: 33-39. https://doi.org/10.1007/BF01215413   [Google Scholar]
  14. El-Attar SI, Hendy MH, and Ezzat MA (2022). Magneto-thermoelasticity Green–Naghdi theory with memory-dependent derivative in the presence of a moving heat source. International Journal of Advanced and Applied Sciences, 9(7): 33-41. https://doi.org/10.21833/ijaas.2022.07.005   [Google Scholar]
  15. Ezzat MA (1994). State space approach to unsteady two-dimensional free convection flow through a porous medium. Canadian Journal of Physics, 72(5-6): 311-317. https://doi.org/10.1139/p94-045   [Google Scholar]
  16. Ezzat MA (2012). State space approach to thermoelectric fluid with fractional order heat transfer. Heat and Mass Transfer, 48: 71-82. https://doi.org/10.1007/s00231-011-0830-8   [Google Scholar]
  17. Ezzat MA and Youssef HM (2010). Stokes’ first problem for an electro-conducting micropolar fluid with thermoelectric properties. Canadian Journal of Physics, 88(1): 35-48. https://doi.org/10.1139/P09-100   [Google Scholar]
  18. Ezzat MA, Othman MI, and El-Karamany AM (2002). State space approach to two-dimensional generalized thermo-viscoelasticity with two relaxation times. International Journal of Engineering Science, 40(11): 1251-1274. https://doi.org/10.1016/S0020-7225(02)00012-5   [Google Scholar]
  19. Green AE and Lindsay K (1972). Thermoelasticity. Journal of Elasticity, 2: 1-7. https://doi.org/10.1007/BF00045689   [Google Scholar]
  20. Green AE and Naghdi P (1991). A re-examination of the basic postulates of thermomechanics. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 432(1885): 171-194. https://doi.org/10.1098/rspa.1991.0012   [Google Scholar]
  21. Green AE and Naghdi P (1993). Thermoelasticity without energy dissipation. Journal of Elasticity, 31(3): 189-208. https://doi.org/10.1007/BF00044969   [Google Scholar]
  22. Helmy AED, Nasr AMAA, El-Bary AA, and Atef HM (2021). Effect of modified Ohm's and Fourier's laws on magneto thermoviscoelastic waves with Green-Naghdi theory in a homogeneous isotropic hollow cylinder. International Journal of Advanced and Applied Sciences, 8(6): 40-47. https://doi.org/10.21833/ijaas.2021.06.005   [Google Scholar]
  23. Hendy MH, Amin MM, and Ezzat MA (2019). Two-dimensional problem for thermoviscoelastic materials with fractional order heat transfer. Journal of Thermal Stresses, 42(10): 1298-1315. https://doi.org/10.1080/01495739.2019.1623734   [Google Scholar]
  24. Hetnarski RB and Ignaczak J (1993). Generalized thermoelasticity: Closed-form solutions. Journal of Thermal Stresses, 16(4): 473-498. https://doi.org/10.1080/01495739308946241   [Google Scholar]
  25. Hetnarski RB and Ignaczak J (1996). Soliton-like waves in a low temperature nonlinear thermoelastic solid. International Journal of Engineering Science, 34(15): 1767-1787. https://doi.org/10.1016/S0020-7225(96)00046-8   [Google Scholar]
  26. Khamis AK, El-Bary AA, Youssef HM, and Bakali A (2020). Generalized thermoelasticity with fractional order strain of infinite medium with a cylindrical cavity. International Journal of Advances in Applied Sciences, 7(7): 102-108. https://doi.org/10.21833/ijaas.2020.07.013   [Google Scholar]
  27. Kumar A, Kant S, and Mukhopadhyay S (2017). An in-depth investigation on plane harmonic waves under two-temperature thermoelasticity with two relaxation parameters. Mathematics and Mechanics of Solids, 22(2): 191-209. https://doi.org/10.1177/1081286515578495   [Google Scholar]
  28. Lord HW and Shulman Y (1967). A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15(5): 299-309. https://doi.org/10.1016/0022-5096(67)90024-5   [Google Scholar]
  29. Ogata K (1967). State space analysis of control systems. Prentice-Hall, Hoboken, USA.   [Google Scholar]
  30. Sherief HH (1993). State space approach to thermoelasticity with two relaxation times. International Journal of Engineering Science, 31(8): 1177-1189. https://doi.org/10.1016/0020-7225(93)90091-8   [Google Scholar]
  31. Sherief HH and Helmy KA (2002). A two-dimensional problem for a half-space in magneto-thermoelasticity with thermal relaxation. International Journal of Engineering Science, 40(5): 587-604. https://doi.org/10.1016/S0020-7225(00)00093-8   [Google Scholar]
  32. Sherief HH, Hamza FA, and Abd El-Latief AM (2015). 2D problem for a half-space in the generalized theory of thermo-viscoelasticity. Mechanics of Time-Dependent Materials, 19: 557-568. https://doi.org/10.1007/s11043-015-9278-4   [Google Scholar]
  33. Simmons GF (2003). Introduction to topology and modern analysis. Krieger Publishing Company, Malabar, USA.   [Google Scholar]
  34. Tang DW and Araki N (1997). On non-Fourier temperature wave and thermal relaxation time. International Journal of Thermophysics, 18: 493-504. https://doi.org/10.1007/BF02575178   [Google Scholar]
  35. Youssef H (2010). A two-temperature generalized thermoelastic medium subjected to a moving heat source and ramp-type heating: A state-space approach. Journal of Mechanics of Materials and Structures, 4(9): 1637-1649. https://doi.org/10.2140/jomms.2009.4.1637   [Google Scholar]
  36. Yu B, Jiang X, and Xu H (2015). A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation. Numerical Algorithms, 68: 923-950. https://doi.org/10.1007/s11075-014-9877-1   [Google Scholar]
  37. Yu YJ, Tian XG, and Lu TJ (2013). Fractional order generalized electro-magneto-thermo-elasticity. European Journal of Mechanics-A/Solids, 42: 188-202. https://doi.org/10.1016/j.euromechsol.2013.05.006   [Google Scholar]