International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 12, Issue 1 (January 2025), Pages: 242-255

----------------------------------------------

 Original Research Paper

The relationship between big data analytics and financial performance in the Vietnamese banking sector

 Author(s): 

 Nhan Truong Thanh Dang 1, Van Dung Ha 2, *, Van Thu Nguyen 2

 Affiliation(s):

 1Faculty of Business Administration, Ho Chi Minh University of Banking, Ho Chi Minh City, Vietnam
 2Faculty of International Economics, Ho Chi Minh University of Banking, Ho Chi Minh City, Vietnam

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0009-0006-5627-3261

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2025.01.023

 Abstract

The rise of big data has brought both significant advantages and challenges, as nearly all research fields now face large, unpredictable volumes of data at varying speeds. The banking sector, in particular, has gained attention from researchers due to its reliance on data, driven by advancements in computer science. Although big data presents numerous opportunities and challenges across industries, research on this topic in banking remains limited and requires further exploration. To address this gap, this study investigates the relationship between big data analytics (BDA) factors and banks' financial performance, while offering managerial recommendations to improve the use of BDA in managing bank performance. A quantitative research method was applied, using convenience sampling to distribute survey questionnaires to 250 bank employees in Ho Chi Minh City, from junior staff to senior managers. The results indicate that BDA factors, including technological capability, talent capability, and bank capability, have a significant impact on banks' financial performance. This study contributes to raising research awareness on BDA methodologies and provides insights into the relationship between these factors and financial performance.

 © 2025 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Big data analytics, Financial performance, Banking sector, Technological capability, Quantitative research

 Article history

 Received 12 September 2024, Received in revised form 6 January 2025, Accepted 13 January 2025

 Acknowledgment

No Acknowledgment.

 Compliance with ethical standards

 Ethical considerations

This study adhered to ethical research guidelines, ensuring informed consent, participant anonymity, and voluntary participation. No personally identifiable information was collected, and ethical approval was not required under institutional regulations.

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Dang NTT, Ha VD, and Nguyen VT (2025). The relationship between big data analytics and financial performance in the Vietnamese banking sector. International Journal of Advanced and Applied Sciences, 12(1): 242-255

 Permanent Link to this page

 Figures

 Fig. 1

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 

----------------------------------------------   

 References (67)

  1. Agarwal R and Dhar V (2014). Big data, data science, and analytics: The opportunity and challenge for IS research. Information Systems Research, 25(3): 443-448. https://doi.org/10.1287/isre.2014.0546   [Google Scholar]
  2. Akhtar P, Khan Z, Frynas JG, Tse YK, and Rao‐Nicholson R (2018). Essential micro‐foundations for contemporary business operations: Top management tangible competencies, relationship‐based business networks and environmental sustainability. British Journal of Management, 29: 43-62. https://doi.org/10.1111/1467-8551.12233   [Google Scholar]
  3. Akter S, Wamba SF, Gunasekaran A, Dubey R, and Childe SJ (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182: 113-131. https://doi.org/10.1016/j.ijpe.2016.08.018   [Google Scholar]
  4. Amran A and Haniffa R (2011). Evidence in development of sustainability reporting: A case of a developing country. Business Strategy and the Environment, 20: 141-156. https://doi.org/10.1002/bse.672   [Google Scholar]
  5. Barney J (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1): 99-120. https://doi.org/10.1177/014920639101700108   [Google Scholar]
  6. Barton D and Court D (2012). Making advanced analytics work for you. Harvard Business Review, 90(10): 78-83.   [Google Scholar]
  7. Bell E, Bryman A, and Harley B (2022). Business research methods. Oxford University Press, Oxford, UK. https://doi.org/10.1093/hebz/9780198869443.001.0001   [Google Scholar]
  8. Bharadwaj AS (2000). A resource-based perspective on information technology capability and firm performance: An empirical investigation. MIS Quarterly, 24(1): 169-196. https://doi.org/10.2307/3250983   [Google Scholar]
  9. Boynton AC, Zmud RW, and Jacobs GC (1994). The influence of IT management practice on IT use in large organizations. MIS Quarterly, 18(3): 299-318. https://doi.org/10.2307/249620   [Google Scholar]
  10. Byrd TA and Turner DE (2000). Measuring the flexibility of information technology infrastructure: Exploratory analysis of a construct. Journal of Management Information Systems, 17(1): 167-208. https://doi.org/10.1080/07421222.2000.11045632   [Google Scholar]
  11. Chae HC, Koh CE, and Prybutok VR (2014). Information technology capability and firm performance: Contradictory findings and their possible causes. MIS Quarterly, 38(1): 305-326. https://doi.org/10.25300/MISQ/2014/38.1.14   [Google Scholar]
  12. Chen Y, Wang Y, Nevo S, Jin J, Wang L, and Chow WS (2014). IT capability and organizational performance: The roles of business process agility and environmental factors. European Journal of Information Systems, 23(3): 326-342. https://doi.org/10.1057/ejis.2013.4   [Google Scholar]
  13. Cheung DK, Welford RJ, and Hills PR (2009). CSR and the environment: Business supply chain partnerships in Hong Kong and PRDR, China. Corporate Social Responsibility and Environmental Management, 16: 250-263. https://doi.org/10.1002/csr.208   [Google Scholar]
  14. Constantiou ID and Kallinikos J (2015). New games, new rules: Big data and the changing context of strategy. Journal of Information Technology, 30(1): 44-57. https://doi.org/10.1057/jit.2014.17   [Google Scholar]
  15. Cornée S, Kalmi P, and Szafarz A (2016). Selectivity and transparency in social banking: Evidence from Europe. Journal of Economic Issues, 50(2): 494-502. https://doi.org/10.1080/00213624.2016.1179056   [Google Scholar]
  16. Davenport TH and Harris JG (2007). Competing on analytics: The new science of winning. 1st Edition, Harvard Business Review Press, Cambridge, USA.   [Google Scholar]
  17. de Clerck F (2009). Ethical banking. In: Zsolnai L, Boda Z, and Fekete L (Eds.), Ethical prospects: Economy, society, and environment: 209-227. Springer, Dordrecht, Netherlands. https://doi.org/10.1007/978-1-4020-9821-5_10   [Google Scholar]
  18. Deephouse DL, Newburry W, and Soleimani A (2016). The effects of institutional development and national culture on cross-national differences in corporate reputation. Journal of World Business, 51(3): 463-473. https://doi.org/10.1016/j.jwb.2015.12.005   [Google Scholar]
  19. Dobers P and Halme M (2009). Corporate social responsibility and developing countries. Corporate Social Responsibility and Environmental Management, 16(5): 237-249. https://doi.org/10.1002/csr.212   [Google Scholar]
  20. Duncan NB (1995). Capturing flexibility of information technology infrastructure: A study of resource characteristics and their measure. Journal of Management Information Systems, 12(2): 37-57. https://doi.org/10.1080/07421222.1995.11518080   [Google Scholar]
  21. Dutta S, Lawson R, and Marcinko D (2012). Paradigms for sustainable development: Implications of management theory. Corporate Social Responsibility and Environmental Management, 19(1): 1-10. https://doi.org/10.1002/csr.259   [Google Scholar]
  22. Essel BKC, Adams F, and Amankwah K (2019). Effect of entrepreneur, firm, and institutional characteristics on small-scale firm performance in Ghana. Journal of Global Entrepreneurship Research, 9: 55. https://doi.org/10.1186/s40497-019-0178-y   [Google Scholar]
  23. Gao J and Sarwar Z (2024). How do firms create business value and dynamic capabilities by leveraging big data analytics management capability? Information Technology and Management, 25(3): 283-304. https://doi.org/10.1007/s10799-022-00380-w   [Google Scholar] PMid:36267115 PMCid:PMC9569419
  24. Gunasekaran A, Papadopoulos T, Dubey R, Wamba SF, Childe SJ, Hazen B, and Akter S (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70: 308-317. https://doi.org/10.1016/j.jbusres.2016.08.004   [Google Scholar]
  25. Gunasekaran A, Tiwari MK, Dubey R, and Wamba SF (2016). Big data and predictive analytics applications in supply chain management. Computers and Industrial Engineering, 101: 525-527. https://doi.org/10.1016/j.cie.2016.10.020   [Google Scholar]
  26. Gupta M and George JF (2016). Toward the development of a big data analytics capability. Information and Management, 53(8): 1049-1064. https://doi.org/10.1016/j.im.2016.07.004   [Google Scholar]
  27. Ha MS and Nguyen TL (2022). Digital transformation in banking: A case from Vietnam. In: Phan T and Damian D (Eds.), Smart cities in Asia: Regulations, problems, and development: 103-114. Springer Nature, Singapore, Singapore. https://doi.org/10.1007/978-981-19-1701-1_9   [Google Scholar] PMCid:PMC8894390
  28. Hackman JR and Oldham GR (1980). Work redesign. Addison-Wesley, Reading, USA.   [Google Scholar]
  29. Hair JF, Anderson RE, Tatham RL, and Black WC (1998). Multivariate data analysis. 5th Edition, Prentice Hall, Upper Saddle River, USA.   [Google Scholar]
  30. Iacobucci D (2009). Everything you always wanted to know about SEM (structural equations modeling) but were afraid to ask. Journal of Consumer Psychology, 19(4): 673-680. https://doi.org/10.1016/j.jcps.2009.09.002   [Google Scholar]
  31. Jin D and Mengqi N (2011). The paradox of green credit in China. Energy Procedia, 5: 1979-1986. https://doi.org/10.1016/j.egypro.2011.03.340   [Google Scholar]
  32. Karimi J, Somers TM, and Gupta YP (2001). Impact of information technology management practices on customer service. Journal of Management Information Systems, 17(4): 125-158. https://doi.org/10.1080/07421222.2001.11045661   [Google Scholar]
  33. Kharote M and Kshirsagar VP (2014). Data mining model for money laundering detection in financial domain. International Journal of Computer Applications, 85(16): 61-64. https://doi.org/10.5120/14929-3337   [Google Scholar]
  34. Kim G, Shin B, and Kwon O (2012). Investigating the value of sociomaterialism in conceptualizing IT capability of a firm. Journal of Management Information Systems, 29(3): 327-362. https://doi.org/10.2753/MIS0742-1222290310   [Google Scholar]
  35. Kiron D, Prentice PK, and Ferguson RB (2014). The analytics mandate. MIT Sloan Management Review, 55(4): 1-25.   [Google Scholar]
  36. Li C and Parboteeah KP (2015). The effect of culture on the responsiveness of firms to mimetic forces: Imitative foreign joint venture entries into China, 1985–2003. Journal of World Business, 50(3): 465-476. https://doi.org/10.1016/j.jwb.2014.08.002   [Google Scholar]
  37. Li EY, Jiang JJ, and Klein G (2003). The impact of organizational coordination and climate on marketing executives' satisfaction with information systems services. Journal of the Association for Information Systems, 4(1): 99-117. https://doi.org/10.17705/1jais.00031   [Google Scholar]
  38. Lin BW (2007). Information technology capability and value creation: Evidence from the US banking industry. Technology in Society, 29(1): 93-106. https://doi.org/10.1016/j.techsoc.2006.10.003   [Google Scholar]
  39. Lu Y and Ramamurthy K (2011). Understanding the link between information technology capability and organizational agility: An empirical examination. MIS Quarterly, 35(4): 931-954. https://doi.org/10.2307/41409967   [Google Scholar]
  40. Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, and Byers AH (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute, New York, USA.   [Google Scholar]
  41. Mayer-Schönberger V and Cukier K (2013). Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt, Boston, USA.   [Google Scholar]
  42. McAfee A and Brynjolfsson E (2012). Big data: The management revolution. Harvard Business Review, 90(10): 60-68.   [Google Scholar]
  43. Norris M and Lecavalier L (2010). Evaluating the use of exploratory factor analysis in developmental disability psychological research. Journal of Autism and Developmental Disorders, 40: 8-20. https://doi.org/10.1007/s10803-009-0816-2   [Google Scholar] PMid:19609833
  44. Oliver C (1991). Strategic responses to institutional processes. Academy of Management Review, 16(1): 145-179. https://doi.org/10.5465/amr.1991.4279002   [Google Scholar]
  45. Oliver C (1997). Sustainable competitive advantage: Combining institutional and resource‐based views. Strategic Management Journal, 18(9): 697-713. https://doi.org/10.1002/(SICI)1097-0266(199710)18:9<697::AID-SMJ909>3.0.CO;2-C   [Google Scholar]
  46. Orlitzky M, Siegel DS, and Waldman DA (2011). Strategic corporate social responsibility and environmental sustainability. Business and Society, 50(1): 6-27. https://doi.org/10.1177/0007650310394323   [Google Scholar]
  47. Peng MW, Sun SL, Pinkham B, and Chen H (2009). The institution-based view as a third leg for a strategy tripod. Academy of Management Perspectives, 23(3): 63-81. https://doi.org/10.5465/amp.2009.43479264   [Google Scholar]
  48. Phillips-Wren G and Hoskisson A (2015). An analytical journey towards big data. Journal of Decision Systems, 24(1): 87-102. https://doi.org/10.1080/12460125.2015.994333   [Google Scholar]
  49. Radzi KM, Nor MNM, and Ali SM (2017). The impact of internal factors on small business success: A case of small enterprises under the FELDA scheme. Asian Academy of Management Journal, 22(1): 27-55. https://doi.org/10.21315/aamj2017.22.1.2   [Google Scholar]
  50. Rahman NA and Ramli A (2014). Entrepreneurship management, competitive advantage and firm performances in the craft industry: Concepts and framework. Procedia-Social and Behavioral Sciences, 145: 129-137. https://doi.org/10.1016/j.sbspro.2014.06.019   [Google Scholar]
  51. Ramaswamy S (2013). What the companies winning at big data do differently. Harvard Business Review Magazine, Boston, USA.   [Google Scholar]
  52. Saffu K, Walker JH, and Mazurek M (2012). Perceived strategic value and e-commerce adoption among SMEs in Slovakia. Journal of Internet Commerce, 11(1): 1-23. https://doi.org/10.1080/15332861.2012.650986   [Google Scholar]
  53. Shrivastava P (1995). The role of corporations in achieving ecological sustainability. Academy of Management Review, 20(4): 936-960. https://doi.org/10.5465/amr.1995.9512280026   [Google Scholar]
  54. Srinivasan U and Arunasalam B (2013). Leveraging big data analytics to reduce healthcare costs. IT Professional, 15(6): 21-28. https://doi.org/10.1109/MITP.2013.55   [Google Scholar]
  55. Tatoglu E, Glaister AJ, and Demirbag M (2016). Talent management motives and practices in an emerging market: A comparison between MNEs and local firms. Journal of World Business, 51(2): 278-293. https://doi.org/10.1016/j.jwb.2015.11.001   [Google Scholar]
  56. Tippins MJ and Sohi RS (2003). IT competency and firm performance: Is organizational learning a missing link? Strategic Management Journal, 24(8): 745-761. https://doi.org/10.1002/smj.337   [Google Scholar]
  57. Tran HN (2024). Vietnamese enterprises’ considerations of big data and analytics implementation post-COVID-19 pandemic. International Journal of Organizational Analysis, 32(1): 95-107. https://doi.org/10.1108/IJOA-12-2022-3545   [Google Scholar]
  58. Wade M and Hulland J (2004). The resource-based view and information systems research: Review, extension, and suggestions for future research. MIS Quarterly, 28(1): 107-142. https://doi.org/10.2307/25148626   [Google Scholar]
  59. Waller MA and Fawcett SE (2013). Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management. Journal of Business logistics, 34: 77-84. https://doi.org/10.1111/jbl.12010   [Google Scholar]
  60. Wang G, Gunasekaran A, Ngai EW, and Papadopoulos T (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176: 98-110. https://doi.org/10.1016/j.ijpe.2016.03.014   [Google Scholar]
  61. Werner RA (2014). How do banks create money, and why can other firms not do the same? An explanation for the coexistence of lending and deposit-taking. International Review of Financial Analysis, 36: 71-77. https://doi.org/10.1016/j.irfa.2014.10.013   [Google Scholar]
  62. Wixom BH, Yen B, and Relich M (2013). Maximizing value from business analytics. MIS Quarterly Executive, 12(2): 111–123.   [Google Scholar]
  63. Xun J (2013). Corporate social responsibility in China: A preferential stakeholder model and effects. Business Strategy and the Environment, 22(7): 471-483. https://doi.org/10.1002/bse.1757   [Google Scholar]
  64. Yin (2014). Case study research: Design and methods. 5th Edition, SAGE, Thousand Oaks, USA.   [Google Scholar]
  65. Zeng SX, Xu XD, Dong ZY, and Tam VW (2010). Towards corporate environmental information disclosure: An empirical study in China. Journal of Cleaner Production, 18(12): 1142-1148. https://doi.org/10.1016/j.jclepro.2010.04.005   [Google Scholar]
  66. Zhang B, Yang Y, and Bi J (2011). Tracking the implementation of green credit policy in China: Top-down perspective and bottom-up reform. Journal of Environmental Management, 92(4): 1321-1327. https://doi.org/10.1016/j.jenvman.2010.12.019   [Google Scholar] PMid:21220183
  67. Zhilong T, Hafsi T, and Wei W (2009). Institutional determinism and political strategies. Business and Society, 48(3): 284-325. https://doi.org/10.1177/0007650307305371   [Google Scholar]