International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 12, Issue 1 (January 2025), Pages: 104-111

----------------------------------------------

 Original Research Paper

Evaluation of personality traits influencing destination selection among Vietnamese tourists

 Author(s): 

 Nguyen Thanh Nam 1, Bui Cam Phuong 2, *, Pham Tran Thang Long 2, Truong Duc Thao 3

 Affiliation(s):

 1Faculty of Cultural Studies, Hanoi University of Culture, Hanoi, Vietnam
 2Faculty of Tourism, Thang Long University, Hanoi, Vietnam
 3Faculty of Economics and Management, Dai Nam University, Hanoi, Vietnam

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-9107-7334

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2025.01.010

 Abstract

This study investigates the factors influencing Vietnamese tourists' destination choices using survey data from 405 visitors to tourist sites in Hanoi, Vietnam. The research integrates the Theory of Planned Behavior (TPB), the Technology Acceptance Model (TAM), and personality trait theory to develop a comprehensive framework. Data analysis, conducted using SPSS 20 and AMOS 24, reveals that tourists with modern personality traits positively impact destination selection and strengthen the relationship between travel intention and selection behavior. In contrast, traditional personality traits neither directly influence destination choice nor enhance this relationship. The findings also highlight that travel intentions are driven by the perceived ease of trip planning and the benefits of travel, with travel intention emerging as the most significant determinant of destination selection. These insights provide valuable implications for tourism marketing strategies and destination management.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Tourist behavior, Destination selection, Travel intention, Personality traits, Trip planning

 Article history

 Received 22 July 2024, Received in revised form 19 December 2024, Accepted 26 December 2024

 Acknowledgment

No Acknowledgment.

 Compliance with ethical standards

 Ethical considerations

The study was conducted in accordance with ethical guidelines. Informed consent was obtained from all participants, and their anonymity and confidentiality were ensured. Data were securely stored and used solely for academic purposes.

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Nam NT, Phuong BC, Long PTT, and Thao TD (2025). Evaluation of personality traits influencing destination selection among Vietnamese tourists. International Journal of Advanced and Applied Sciences, 12(1): 104-111

 Permanent Link to this page

 Figures

 Fig. 1 

 Tables

 Table 1 Table 2 

----------------------------------------------   

 References (46)

  1. Ajzen I (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2): 179-211. https://doi.org/10.1016/0749-5978(91)90020-T   [Google Scholar]
  2. Arnould EJ, Price L, and Zinkhan GM (2004). Consumers. McGraw-Hill/Irwin, New York, USA.   [Google Scholar]
  3. Berakon I, Wibowo MG, Nurdany A, and Aji HM (2023). An expansion of the technology acceptance model applied to the halal tourism sector. Journal of Islamic Marketing, 14(1): 289-316. https://doi.org/10.1108/JIMA-03-2021-0064   [Google Scholar]
  4. Brezavšček A, Šparl P, and Žnidaršič A (2014). Extended technology acceptance model for SPSS acceptance among Slovenian students of social sciences. Organizacija, 47(2): 116-127. https://doi.org/10.2478/orga-2014-0009   [Google Scholar]
  5. Brunelle C and Grossman H (2022). Predictors of online compulsive buying: The role of personality and mindfulness. Personality and Individual Differences, 185(2): 111237. https://doi.org/10.1016/j.paid.2021.111237   [Google Scholar]
  6. Carr AS, Zhang M, Klopping I, and Min H (2010). RFID technology: Implications for healthcare organizations. American Journal of Business, 25(2): 25-40. https://doi.org/10.1108/19355181201000008   [Google Scholar]
  7. Chen J, Wu X, and Lai IKW (2023). A systematic literature review of virtual technology in hospitality and tourism (2013–2022). Sage Open, 13(3). https://doi.org/10.1177/21582440231193297   [Google Scholar]
  8. Davis FD (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3): 319-340. https://doi.org/10.2307/249008   [Google Scholar]
  9. Dung PX, Trung VT, Thao TD, and Hoang CC (2023). Intention to apply rehabilitation exercises to patients in healthcare facilities in Vietnam. International Journal of Advanced and Applied Sciences, 10(6): 80-88. https://doi.org/10.21833/ijaas.2023.06.010   [Google Scholar]
  10. El Archi Y, Benbba B, Nizamatdinova Z, Issakov Y, Vargáné GI, and Dávid LD (2023). Systematic literature review analysing smart tourism destinations in context of sustainable development: Current applications and future directions. Sustainability, 15(6): 5086. https://doi.org/10.3390/su15065086   [Google Scholar]
  11. Elbeltagi I, McBride N, and Hardaker G (2005). Evaluating the factors affecting DSS usage by senior managers in local authorities in Egypt. Journal of Global Information Management (JGIM), 13(2): 42-65. https://doi.org/10.4018/jgim.2005040103   [Google Scholar]
  12. Fishbein M and Ajzen I (1974). Attitudes towards objects as predictors of single and multiple behavioral criteria. Psychological Review, 81(1): 59-74. https://doi.org/10.1037/h0035872   [Google Scholar]
  13. Hair Jr JF, Anderson RE, and Tatham RL (1995). Multivariate data analysis. 4th Edition, Macmillan Publishing Company, New York, USA.   [Google Scholar]
  14. Hasan B (2007). Examining the effects of computer self-efficacy and system complexity on technology acceptance. Information Resources Management Journal (IRMJ), 20(3): 76-88. https://doi.org/10.4018/irmj.2007070106   [Google Scholar]
  15. Huang YC, Backman SJ, Backman KF, and Moore D (2013). Exploring user acceptance of 3D virtual worlds in travel and tourism marketing. Tourism Management, 36: 490-501. https://doi.org/10.1016/j.tourman.2012.09.009   [Google Scholar]
  16. Jalilvand MR, Samiei N, Dini B, and Manzari PY (2012). Examining the structural relationships of electronic word of mouth, destination image, tourist attitude toward destination and travel intention: An integrated approach. Journal of Destination Marketing and Management, 1(1-2): 134-143. https://doi.org/10.1016/j.jdmm.2012.10.001   [Google Scholar]
  17. Kiráľová A and Pavlíčeka A (2015). Development of social media strategies in tourism destination. Procedia-Social and Behavioral Sciences, 175: 358-366. https://doi.org/10.1016/j.sbspro.2015.01.1211   [Google Scholar]
  18. Klein R (2007). Internet-based patient-physician electronic communication applications: Patient acceptance and trust. E-Service Journal, 5(2): 27-52. https://doi.org/10.2979/esj.2007.5.2.27   [Google Scholar]
  19. Korzaan ML and Boswell KT (2008). The influence of personality traits and information privacy concerns on behavioral intentions. Journal of Computer Information Systems, 48(4): 15-24.   [Google Scholar]
  20. Kotler P and Armstrong G (2016). Principles of marketing sixteenth edition. Pearson Education Limited, London, UK.   [Google Scholar]
  21. Kumar A, Sikdar P, and Alam MM (2016). E-retail adoption in emerging markets: Applicability of an integrated trust and technology acceptance model. International Journal of E-Business Research (IJEBR), 12(3): 44-67. https://doi.org/10.4018/IJEBR.2016070104   [Google Scholar]
  22. Li Y, Liang J, Huang J, Yang M, Li R, and Bai H (2022). Would you accept virtual Tourism? The impact of COVID-19 risk perception on technology acceptance from a comparative perspective. Sustainability, 14(19): 12693. https://doi.org/10.3390/su141912693   [Google Scholar]
  23. Liu H and Zhou L (2012). Predicting young Chinese consumers' mobile viral attitudes, intents and behavior. Asia Pacific Journal of Marketing and Logistics, 24(1): 59-77. https://doi.org/10.1108/13555851211192704   [Google Scholar]
  24. Mai NTT, Jung K, Lantz G, and Loeb SG (2003). An exploratory investigation into impulse buying behavior in a transitional economy: A study of urban consumers in Vietnam. Journal of International Marketing, 11(2): 13-35. https://doi.org/10.1509/jimk.11.2.13.20162   [Google Scholar]
  25. Mai NTT, Smith K, and Cao JR (2009). Measurement of modern and traditional self-concepts in Asian transitional economies. Journal of Asia-Pacific Business, 10(3): 201-220. https://doi.org/10.1080/10599230903094745   [Google Scholar]
  26. Marangunić N and Granić A (2015). Technology acceptance model: A literature review from 1986 to 2013. Universal Access in the Information Society, 14: 81-95. https://doi.org/10.1007/s10209-014-0348-1   [Google Scholar]
  27. Mariani MG, Curcuruto M, and Gaetani I (2013). Training opportunities, technology acceptance and job satisfaction: A study of Italian organizations. Journal of Workplace Learning, 25(7): 455-475. https://doi.org/10.1108/JWL-12-2011-0071   [Google Scholar]
  28. Markus H and Wurf E (1987). The dynamic self-concept: A social psychological perspective. Annual Review of Psychology, 38: 299–337. https://doi.org/10.1146/annurev.ps.38.020187.001503   [Google Scholar]
  29. Mortenson MJ and Vidgen R (2016). A computational literature review of the technology acceptance model. International Journal of Information Management, 36(6): 1248-1259. https://doi.org/10.1016/j.ijinfomgt.2016.07.007   [Google Scholar]
  30. Mutinda R and Mayaka M (2012). Application of destination choice model: Factors influencing domestic tourists destination choice among residents of Nairobi, Kenya. Tourism Management, 33(6): 1593-1597. https://doi.org/10.1016/j.tourman.2011.12.008   [Google Scholar]
  31. Ong CM, Kathawala Y, and Sawalha N (2015). A model for ISO 9000 quality management system maintenance. Quality Management Journal, 22(2): 11-32. https://doi.org/10.1080/10686967.2015.11918426   [Google Scholar]
  32. Rauniar R, Rawski G, Yang J, and Johnson B (2014). Technology acceptance model (TAM) and social media usage: An empirical study on Facebook. Journal of Enterprise Information Management, 27(1): 6-30. https://doi.org/10.1108/JEIM-04-2012-0011   [Google Scholar]
  33. Rehman SU, Bhatti A, Mohamed R, and Ayoup H (2019). The moderating role of trust and commitment between consumer purchase intention and online shopping behavior in the context of Pakistan. Journal of Global Entrepreneurship Research, 9(1): 1-25. https://doi.org/10.1186/s40497-019-0166-2   [Google Scholar]
  34. Salimon MG, Kareem O, Mokhtar SSM, Aliyu OA, Bamgbade JA, and Adeleke AQ (2023). Malaysian SMEs m-commerce adoption: TAM 3, UTAUT 2 and TOE approach. Journal of Science and Technology Policy Management, 14(1): 98-126. https://doi.org/10.1108/JSTPM-06-2019-0060   [Google Scholar]
  35. Sancho-Esper F, Ostrovskaya L, Rodriguez-Sanchez C, and Campayo-Sanchez F (2023). Virtual reality in retirement communities: Technology acceptance and tourist destination recommendation. Journal of Vacation Marketing, 29(2): 275-290. https://doi.org/10.1177/13567667221080567   [Google Scholar]
  36. Scherer R, Siddiq F, and Tondeur J (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers' adoption of digital technology in education. Computers and Education, 128: 13-35. https://doi.org/10.1016/j.compedu.2018.09.009   [Google Scholar]
  37. Sheikhshoaei F and Oloumi T (2011). Applying the technology acceptance model to Iranian engineering faculty libraries. The Electronic Library, 29(3): 367-378. https://doi.org/10.1108/02640471111141106   [Google Scholar]
  38. Steers RM and Porter LW (1987). Motivation and work behavior. 3rd Edition, McGraw-Hill, New York, USA.   [Google Scholar]
  39. Tang Z, Chen X, and Wu Z (2010). Using behavior theory to investigate individual-level determinants of employee involvement in TQM. Total Quality Management, 21(12): 1231-1260. https://doi.org/10.1080/14783363.2010.530794   [Google Scholar]
  40. Tarcan E, Varol ES, and Toker B (2010). A study on the acceptance of information technologies from the perspectives of the academicians in Turkey. Ege Academic Review, 10(3): 791-812. https://doi.org/10.21121/eab.2010319615   [Google Scholar]
  41. Thang N, Thao T, Dung P, Phuong B, Long P, Toi D, Trung V, Thuy N, and Linh B (2023). Intention to apply e-commerce in marketing communication activities in the supply chain of community-based tourism in Vietnam. Uncertain Supply Chain Management, 11(3): 1205-1212. https://doi.org/10.5267/j.uscm.2023.4.002   [Google Scholar]
  42. Walker G and Johnson N (2008). Faculty intentions to use components for web-enhanced instruction. International Journal on E-Learning, 7(1): 133-152.   [Google Scholar]
  43. Xian X (2020). Consumer acceptance and use of virtual reality: An empirical investigation. Journal of Nonlinear and Convex Analysis, 21(8): 1719-1726.   [Google Scholar]
  44. Yang C, Yan S, Wang J, and Xue Y (2022). Flow experiences and virtual tourism: The role of technological acceptance and technological readiness. Sustainability, 14(9): 5361. https://doi.org/10.3390/su14095361   [Google Scholar]
  45. Yoon Y and Uysal M (2005). An examination of the effects of motivation and satisfaction on destination loyalty: A structural model. Tourism Management, 26(1): 45-56. https://doi.org/10.1016/j.tourman.2003.08.016   [Google Scholar]
  46. Zhuang X, Hou X, Feng Z, Lin Z and Li J (2021). Subjective norms, attitudes, and intentions of AR technology use in tourism experience: The moderating effect of millennials. Leisure Studies, 40(3): 392-406. https://doi.org/10.1080/02614367.2020.1843692   [Google Scholar]