International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 8 (August 2024), Pages: 187-197

----------------------------------------------

 Original Research Paper

Optimizing water usage through an automatic garden sprinkler system: Enhancing efficiency and sustainability in gardening

 Author(s): 

 Feliciana P. Jacoba *

 Affiliation(s):

 Graduate School, Nueva Ecija University of Science and Technology, Cabanatuan, Philippines

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-8531-8381

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.08.020

 Abstract

This study investigates the design and operation of an automatic garden sprinkler system, focusing on the need for a dependable, self-operating watering solution that conserves water and supports night-time watering schedules. The research method included a detailed evaluation of the system's performance over 30 days, analyzing data on timing accuracy, water distribution efficiency, and user feedback. The results show that the system works accurately, starting watering cycles within minutes of the set time and efficiently distributing water evenly across the garden. The findings suggest the system can help reduce water waste, supporting global sustainability goals. Additionally, its flexibility and ease of use suggest it could be popular with gardeners and widely adopted. This research adds to the conversation on sustainable gardening and provides insights into using advanced technology in traditional gardening practices.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Automatic garden sprinkler system, Water conservation, Timing accuracy, Sustainable horticulture, Water distribution efficiency

 Article history

 Received 10 May 2024, Received in revised form 22 August 2024, Accepted 23 August 2024

 Acknowledgment

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Jacoba FP (2024). Optimizing water usage through an automatic garden sprinkler system: Enhancing efficiency and sustainability in gardening. International Journal of Advanced and Applied Sciences, 11(8): 187-197

 Permanent Link to this page

 Figures

 No Figure

 Tables

 Table 1 

----------------------------------------------   

 References (69)

  1. Abeywardana N, Schütt B, Wagalawatta T, and Bebermeier W (2019). Indigenous agricultural systems in the dry zone of Sri Lanka: Management transformation assessment and sustainability. Sustainability, 11(3): 910. https://doi.org/10.3390/su11030910   [Google Scholar]
  2. Abuzanouneh KI, Al-Wesabi FN, Albraikan AA, Al Duhayyim M, Al-Shabi M, Hilal AM, Hamza MA, Zamani AS, and Muthulakshmi K (2022). Design of machine learning based smart irrigation system for precision agriculture. Computers Materials and Continua, 72(1): 109-124. https://doi.org/10.32604/cmc.2022.022648   [Google Scholar]
  3. Ağizan S and Bayramoğlu Z (2021). Comparative investment analysis of agricultural irrigation systems. Tekirdağ Ziraat Fakültesi Dergisi, 18(2): 222-233. https://doi.org/10.33462/jotaf.745548   [Google Scholar]
  4. Baki H, Raoof M, and Fujimaki H (2020). Determining irrigation depths for soybean using a simulation model of water flow and plant growth and weather forecasts. Agronomy, 10(3): 369. https://doi.org/10.3390/agronomy10030369   [Google Scholar]
  5. Batabyal S, Cervenka G, Birch D, Kim YT, and Mohanty S (2015). Broadband activation by white-opsin lowers intensity threshold for cellular stimulation. Scientific Reports, 5(1): 17857. https://doi.org/10.1038/srep17857   [Google Scholar] PMid:26658483 PMCid:PMC4677322
  6. Berry MH, Holt A, Salari A, Veit J, Visel M, Levitz J, Aghi K, Gaub BM, Sivyer B, Flannery JG, and Isacoff EY (2019). Restoration of high-sensitivity and adapting vision with a cone opsin. Nature Communications, 10(1): 1221. https://doi.org/10.1038/s41467-019-09124-x   [Google Scholar] PMid:30874546 PMCid:PMC6420663
  7. Birn-Jeffery A and Higham T (2016). Light level impacts locomotor biomechanics in a secondarily diurnal gecko, Rhoptropus afer. Journal of Experimental Biology, 219(22): 3649-3655. https://doi.org/10.1242/jeb.143719   [Google Scholar] PMid:27852765
  8. Cheng C, Peng J, Ho M, Liao W, and Chern S (2016). Evaluation of water efficiency in green building in Taiwan. Water, 8(6): 236. https://doi.org/10.3390/w8060236   [Google Scholar]
  9. Choudhari G (2023). IoT-based smart gardening system. Journal of Physics Conference Series, 2601(1): 012006. https://doi.org/10.1088/1742-6596/2601/1/012006   [Google Scholar]
  10. Cremades R, Wang J, and Morris J (2015). Policies, economic incentives and the adoption of modern irrigation technology in China. Earth System Dynamics, 6(2): 399-410. https://doi.org/10.5194/esd-6-399-2015   [Google Scholar]
  11. Darouich H, Cameira M, Gonçalves J, Paredes P, and Pereira L (2017). Comparing sprinkler and surface irrigation for wheat using multi-criteria analysis: Water saving vs. economic returns. Water, 9(1): 50. https://doi.org/10.3390/w9010050   [Google Scholar]
  12. Ghansah F, Owusu-Manu D, Ayarkwa J, Edwards D, and Hosseini M (2021). Exploration of latent barriers inhibiting project management processes in adopting smart building technologies (SBTs) in the developing countries. Construction Innovation, 21(4): 685-707. https://doi.org/10.1108/CI-07-2020-0116   [Google Scholar]
  13. Grafton RQ, Williams J, Perry CJ, Molle F, Ringler C, Steduto P, Udall B, Wheeler SA, Wang Y, Garrick D, and Allen RG (2018). The paradox of irrigation efficiency. Science, 361(6404): 748-750. https://doi.org/10.1126/science.aat9314   [Google Scholar] PMid:30139857
  14. Greaves G and Wang Y (2017). Yield response, water productivity, and seasonal water production functions for maize under deficit irrigation water management in southern Taiwan. Plant Production Science, 20(4): 353-365. https://doi.org/10.1080/1343943X.2017.1365613   [Google Scholar]
  15. Hangsing PPR and Rajesh T (2019). A simulation model for the smart irrigation system using Arduino. International Journal of Advanced Research in Computer and Communication Engineering, 8(2): 7-14. https://doi.org/10.17148/IJARCCE.2019.8202   [Google Scholar]
  16. Horbach J, Rammer C, and Rennings K (2012). Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull. Ecological Economics, 78: 112-122. https://doi.org/10.1016/j.ecolecon.2012.04.005   [Google Scholar]
  17. Hou H (2023). Smart tools to facilitate digitalisation of facilities management service delivery: Stakeholders’ perspectives. Facilities, 42(1/2): 27-50. https://doi.org/10.1108/F-05-2022-0072   [Google Scholar]
  18. Hu Z, Liu Y, and Jiang B (2022). Study on comprehensive efficiency evaluation of farmland irrigation water based on compound fuzzy mathematical model. Journal of Physics Conference Series, 2356(1): 012053. https://doi.org/10.1088/1742-6596/2356/1/012053   [Google Scholar]
  19. Jägermeyr J, Pastor A, Biemans H, and Gerten D (2017). Reconciling irrigated food production with environmental flows for sustainable development goals implementation. Nature Communications, 8(1): 15900. https://doi.org/10.1038/ncomms15900   [Google Scholar] PMid:28722026 PMCid:PMC5524928
  20. Jalajamony H, Nair M, Mead P, and Fernandez R (2023). Drone aided thermal mapping for selective irrigation of localized dry spots. IEEE Access, 11: 7320-7335. https://doi.org/10.1109/ACCESS.2023.3237546   [Google Scholar]
  21. Jin G, Kai B, Zhang Y, and He H (2019). A smart water metering system based on image recognition and narrowband Internet of Things. Revue D Intelligence Artificielle, 33(4): 293-298. https://doi.org/10.18280/ria.330405   [Google Scholar]
  22. Kannadhasan S and Shanmuganantham M (2019). Agriculture monitoring and smart irrigation system based on wireless sensors. International Journal of Sensors and Sensor Networks, 7(4): 51. https://doi.org/10.11648/j.ijssn.20190704.11   [Google Scholar]
  23. Kanosvamhira T and Tevera D (2022). Urban community gardens in Cape Town, South Africa: Navigating land access and land tenure security. GeoJournal, 88(3): 3105-3120. https://doi.org/10.1007/s10708-022-10793-3   [Google Scholar] PMid:36465314 PMCid:PMC9685027
  24. Kumar J, Patel N, Singh R, Sahoo PK, Sudhishri S, Sehgal VK, Marwaha S, and Singh AK (2021). Development and evaluation of automation system for irrigation scheduling in broccoli (Brassica oleracea). The Indian Journal of Agricultural Sciences, 91(5): 796-798. https://doi.org/10.56093/ijas.v91i5.113108   [Google Scholar]
  25. Letechipia J, González-Trinidad J, Júnez-Ferreira H, Bautista-Capetillo C, and Dávila-Hernández S (2021). Evaluation of groundwater quality for human consumption and irrigation in relation to arsenic concentration in flow systems in a semi-arid Mexican region. International Journal of Environmental Research and Public Health, 18(15): 8045. https://doi.org/10.3390/ijerph18158045   [Google Scholar] PMid:34360340 PMCid:PMC8345690
  26. Li H, Issaka Z, Jiang Y, Tang P, and Chen C (2019). Overview of emerging technologies in sprinkler irrigation to optimize crop production. International Journal of Agricultural and Biological Engineering, 12(3): 1-9. https://doi.org/10.25165/j.ijabe.20191203.4310   [Google Scholar]
  27. Lin BB, Egerer MH, and Ossola A (2018). Urban gardens as a space to engender biophilia: Evidence and ways forward. Frontiers in Built Environment, 4: 79. https://doi.org/10.3389/fbuil.2018.00079   [Google Scholar]
  28. Lin J, Knutsen P, Muller A, Kleinfeld D, and Tsien R (2013). ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience, 16(10): 1499-1508. https://doi.org/10.1038/nn.3502   [Google Scholar] PMid:23995068 PMCid:PMC3793847
  29. Liu Q, Jiang Y, Jiang M, Li T, Duan Y, and Wu Y (2021). Photoreceptive reaction spectrum effect and phototactic activity intensity of locusts’ visual display characteristics stimulated by spectral light. International Journal of Agricultural and Biological Engineering, 14(2): 19-25. https://doi.org/10.25165/j.ijabe.20211402.4758   [Google Scholar]
  30. Liu Y, Wang Y, Han Z, Ao Y, and Yang L (2020). Influences of building characteristics and attitudes on water conservation behavior of rural residents. Sustainability, 12(18): 7620. https://doi.org/10.3390/su12187620   [Google Scholar]
  31. Liu Z, Zhao Y, Han Y, Wang Q, and Wang F (2018). Driving factors of the evolution of groundwater level in People's Victory Canal Irrigation District, China. Desalin Water Treat, 112: 324-333. https://doi.org/10.5004/dwt.2018.22334   [Google Scholar]
  32. Mani Z and Chouk I (2018). Consumer resistance to innovation in services: challenges and barriers in the Internet of Things era. Journal of Product Innovation Management, 35(5): 780-807. https://doi.org/10.1111/jpim.12463   [Google Scholar]
  33. Matoša Kočar M, Josipović M, Sudarić A, Plavšić H, Beraković I, Atilgan A, and Marković M (2022). Environment- and genotype-dependent irrigation effect on soybean grain yield and grain quality. Applied Sciences, 13(1): 111. https://doi.org/10.3390/app13010111   [Google Scholar]
  34. Morera MC, Monaghan PF, and Dukes MD (2019). Evolving response to smart irrigation controllers in high water‐use central Florida homes. AWWA Water Science, 1(1): e1111. https://doi.org/10.1002/aws2.1111   [Google Scholar]
  35. Morshed M, Rahman S, and Rahman M (2021). Status of rooftop and homestead gardening in Bogura. Journal of Environmental Science and Natural Resources, 12(1-2): 157-164. https://doi.org/10.3329/jesnr.v12i1-2.52030   [Google Scholar]
  36. Mujiono T, Sukekawa Y, Nakamoto T, Mitsuno H, Termtanasombat M, Kanzaki R, and Misawa N (2017). Sensitivity improvement by applying lock-in technique to fluorescent instrumentation for cell-based odor sensor. Sensors and Materials, 29(1): 65–76. https://doi.org/10.18494/SAM.2017.1378   [Google Scholar]
  37. Nascimento D, Tortorella G, and Fettermann D (2022). Association between the benefits and barriers perceived by the users in smart home services implementation. Kybernetes, 52(12): 6179-6202. https://doi.org/10.1108/K-02-2022-0232   [Google Scholar]
  38. Newburn D and Alberini A (2016). Household response to environmental incentives for rain garden adoption. Water Resources Research, 52(2): 1345-1357. https://doi.org/10.1002/2015WR018063   [Google Scholar]
  39. Pagniello CM, Butler J, Rosen A, Sherwood A, Roberts PL, Parnell PE, Jaffe JS, and Širović A (2021). An optical imaging system for capturing images in low-light aquatic habitats using only ambient light. Oceanography, 34(3): 71-77. https://doi.org/10.5670/oceanog.2021.305   [Google Scholar]
  40. Penjor T, Dorji L, Wangmo D, Yangzom K, and Wangchuk T (2022). Automation of hydroponics system using open-source hardware and software with remote monitoring and control. Bhutanese Journal of Agriculture, 5(1): 95-108. https://doi.org/10.55925/btagr.22.5108   [Google Scholar]
  41. Pérez‐Blanco CD and Sapino F (2022). Economic sustainability of irrigation‐dependent ecosystem services under growing water scarcity. Insights from the Reno River in Italy. Water Resources Research, 58(2): e2021WR030478. https://doi.org/10.1029/2021WR030478   [Google Scholar]
  42. Powers S and Lehmann L (2013). The co‐evolution of social institutions, demography, and large‐scale human cooperation. Ecology Letters, 16(11): 1356-1364. https://doi.org/10.1111/ele.12178   [Google Scholar] PMid:24015852
  43. Qihang L, Zhao M, Jin M, Guangchun F, and Wu Y (2022). Influences of yellow and green lights on the visual response of western flower thrips and field verification. International Journal of Agricultural and Biological Engineering, 15(4): 49-56. https://doi.org/10.25165/j.ijabe.20221504.6432   [Google Scholar]
  44. Robles O, Playán E, Cavero J, and Zapata N (2017). Assessing low-pressure solid-set sprinkler irrigation in maize. Agricultural Water Management, 191: 37-49. https://doi.org/10.1016/j.agwat.2017.06.001   [Google Scholar]
  45. Rosa L, Chiarelli DD, Rulli MC, Dell’Angelo J, and D’Odorico P (2020a). Global agricultural economic water scarcity. Science Advances, 6(18): eaaz6031. https://doi.org/10.1126/sciadv.aaz6031   [Google Scholar] PMid:32494678 PMCid:PMC7190309
  46. Rosa L, Chiarelli DD, Sangiorgio M, Beltran-Peña AA, Rulli MC, D’Odorico P, and Fung I (2020b). Potential for sustainable irrigation expansion in a 3°c warmer climate. Proceedings of the National Academy of Sciences, 117(47): 29526-29534. https://doi.org/10.1073/pnas.2017796117   [Google Scholar] PMid:33168728 PMCid:PMC7703655
  47. Salazar C and Rand J (2016). Production risk and adoption of irrigation technology: Evidence from small-scale farmers in Chile. Latin American Economic Review, 25: 2. https://doi.org/10.1007/s40503-016-0032-3   [Google Scholar]
  48. Santos AR (2023). Business transformation at the vegetable trading post: Foundational development strategy for the future. Corporate and Business Strategy Review, 4(3): 46–55. https://doi.org/10.22495/cbsrv4i3art5   [Google Scholar]
  49. Schneiders E, Kanstrup AM, Kjeldskov J, and Skov MB (2021). Domestic robots and the dream of automation: Understanding human interaction and intervention. In the Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3411764.3445629   [Google Scholar]
  50. Schultz P, Messina A, Tronu G, Limas E, Gupta R, and Estrada M (2014). Personalized normative feedback and the moderating role of personal norms. Environment and Behavior, 48(5): 686-710. https://doi.org/10.1177/0013916514553835   [Google Scholar]
  51. Siddiqui M, Akther F, Rahman G, Elahi M, Mostafa R, and Wahid K (2021). Dimensioning of wide-area alternate wetting and drying (AWD) system for IoT-based automation. Sensors, 21(18): 6040. https://doi.org/10.3390/s21186040   [Google Scholar] PMid:34577246 PMCid:PMC8467806
  52. Singh AK, Singh AK, Bhardwaj AK, Verma CL, Mishra VK, Arora S, Sharma N, and Ojha RP (2021). Automation in scheduling irrigation: A review of concepts and latest recommendations in technology. Journal of Natural Resource Conservation and Management, 2(1): 47-56. https://doi.org/10.51396/ANRCM.2.1.2021.47-56   [Google Scholar]
  53. Sirimewan D, Mendis A, Rajini D, Samaraweera A, and Manjula N (2020). Analysis of issues in sustainable water management of irrigation systems: Case of a developing country. Built Environment Project and Asset Management, 11(4): 529-543. https://doi.org/10.1108/BEPAM-02-2020-0038   [Google Scholar]
  54. Smith SM (2022). Dynamics of the legal environment and the development of communal irrigation systems. International Journal of the Commons, 16(1): 14-28. https://doi.org/10.5334/ijc.1112   [Google Scholar]
  55. Sofiya K (2019). Smart drip irrigation system using IoT. International Journal for Research in Applied Science and Engineering Technology, 7(4): 722-726. https://doi.org/10.22214/ijraset.2019.4129   [Google Scholar]
  56. Strong R, Wynn J, Lindner J, and Palmer K (2022). Evaluating Brazilian agriculturalists’ IoT smart agriculture adoption barriers: Understanding stakeholder salience prior to launching an innovation. Sensors, 22(18): 6833. https://doi.org/10.3390/s22186833   [Google Scholar] PMid:36146184 PMCid:PMC9505599
  57. Sun C and Dong L (2022). Virtual reality technology in landscape design at the exit of rail transit using smart sensors. Wireless Communications and Mobile Computing, 2022(1): 6519605. https://doi.org/10.1155/2022/6519605   [Google Scholar]
  58. Taguta C, Dirwai T, Senzanje A, Sikka A, and Mabhaudhi T (2022). Sustainable irrigation technologies: A water-energy-food (WEF) nexus perspective towards achieving more crop per drop per joule per hectare. Environmental Research Letters, 17(7): 073003. https://doi.org/10.1088/1748-9326/ac7b39   [Google Scholar] PMid:35812360 PMCid:PMC9254736
  59. Tambo FLR, Deus FPD, Lima LA, and Thebaldi MS (2021). Influence of sprinkler operational parameters on the cost of conventional sprinkler irrigation systems. Revista Ciência Agronômica, 52: e20207218. https://doi.org/10.5935/1806-6690.20210027   [Google Scholar]
  60. Torku A, Chan A, and Yung E (2020). Implementation of age-friendly initiatives in smart cities: Probing the barriers through a systematic review. Built Environment Project and Asset Management, 11(3): 412-426. https://doi.org/10.1108/BEPAM-01-2020-0008   [Google Scholar]
  61. Torres-Bagur M, Palom A, and Subirós J (2020). Understanding the key factors that influence efficient water-saving practices among tourists: A Mediterranean case study. Water, 12(8): 2083. https://doi.org/10.3390/w12082083   [Google Scholar]
  62. Vrachioli M, Stefanou S, and Tzouvelekas V (2021). Impact evaluation of alternative irrigation technology in Crete: Correcting for selectivity bias. Environmental and Resource Economics, 79(3): 551-574. https://doi.org/10.1007/s10640-021-00572-y   [Google Scholar]
  63. Wada Y and Bierkens M (2014). Sustainability of global water use: Past reconstruction and future projections. Environmental Research Letters, 9(10): 104003. https://doi.org/10.1088/1748-9326/9/10/104003   [Google Scholar]
  64. Yadav A, Mayfield C, Zhou N, Hambrusch S, and Korb J (2014). Computational thinking in elementary and secondary teacher education. ACM Transactions on Computing Education, 14(1): 1-16. https://doi.org/10.1145/2576872   [Google Scholar]
  65. Yan H, Hui X, Li M, and Xu Y (2020). Development in sprinkler irrigation technology in China. Irrigation and Drainage, 69(S2): 75-87. https://doi.org/10.1002/ird.2435   [Google Scholar]
  66. Yannopoulos SI, Lyberatos G, Theodossiou N, Li W, Valipour M, Tamburrino A, and Angelakis AN (2015). Evolution of water lifting devices (pumps) over the centuries worldwide. Water, 7(12): 5031-5060. https://doi.org/10.3390/w7095031   [Google Scholar]
  67. Zhang K, Song B, and Zhu D (2019). The influence of sinusoidal oscillating water flow on sprinkler and impact kinetic energy intensities of laterally-moving sprinkler irrigation systems. Water, 11(7): 1325. https://doi.org/10.3390/w11071325   [Google Scholar]
  68. Zhuravleva L (2023). Intelligent control system wide-reach sprinklers circular action. IOP Conference Series Earth and Environmental Science, 1154(1): 012004. https://doi.org/10.1088/1755-1315/1154/1/012004   [Google Scholar]
  69. Zuidema S, Grogan D, Prusevich A, Lammers R, Gilmore S, and Williams P (2020). Interplay of changing irrigation technologies and water reuse: Example from the upper Snake River basin, Idaho, USA. Hydrology and Earth System Sciences, 24(11): 5231-5249. https://doi.org/10.5194/hess-24-5231-2020   [Google Scholar]