International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 5 (May 2024), Pages: 12-24

----------------------------------------------

 Original Research Paper

A survey of classification cache replacement techniques in the content-centric networking domain

 Author(s): 

 Sidra Batool 1, Muhammad Kaleem 1, *, Salman Rashid 2, Muhammad Azhar Mushtaq 1, Iqra Khan 1

 Affiliation(s):

 1Department of Information Technology, Faculty of Computing and Information Technology, University of Sargodha, Sargodha, Pakistan
 2Department of Computer Science and Information Technology, University of Lahore, Lahore, Pakistan

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-6407-4178

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.05.002

 Abstract

Content-Centric Networking (CCN) is an innovative approach that emphasizes content. A key strategy in CCN for spreading data across the network is in-network caching. Effective caching methods, including content placement and removal tactics, enhance the use of network resources. Cache replacement, also known as content eviction policies, is essential for maximizing CCN's efficiency. When cache storage is full, some content must be removed to make room for new items due to limited storage space. Recently, several advanced replacement strategies have been developed to determine the most suitable content for eviction. This study categorizes the latest cache replacement strategies into various groups such as static, space scarcity, content update, centralized, energy-efficient, weighted, adaptive, and based on dynamic popularity. These categories are based on the approaches suggested in previous research. Additionally, this paper provides a critical analysis of existing methods and suggests future research directions. To the best of our knowledge, this is the most up-to-date and comprehensive review available on this topic.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Content-centric networking, In-network caching, Cache replacement strategies, Content eviction policies, Efficiency optimization

 Article history

 Received 3 December 2023, Received in revised form 11 April 2024, Accepted 19 April 2024

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Batool S, Kaleem M, Rashid S, Mushtaq MA, and Khan I (2024). A survey of classification cache replacement techniques in the content-centric networking domain. International Journal of Advanced and Applied Sciences, 11(5): 12-24

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 

 Tables

 Table 1 Table 2 Table 3 Table 4 

----------------------------------------------   

 References (32)

  1. Adhikari S, Ray S, Obaidat MS, and Biswas GP (2020). Efficient and secure content dissemination architecture for content centric network using ECC-based public key infrastructure. Computer Communications, 157: 187-203. https://doi.org/10.1016/j.comcom.2020.04.024   [Google Scholar]
  2. Alahmadi S (2021). A new efficient cache replacement strategy for named data networking. International Journal of Computer Networks and Communications, 13(5): 19-35. https://doi.org/10.5121/ijcnc.2021.13502   [Google Scholar]
  3. An Y and Luo X (2018). An in-network caching scheme based on energy efficiency for content-centric networks. IEEE Access, 6: 20184-20194. https://doi.org/10.1109/ACCESS.2018.2823722   [Google Scholar]
  4. Chen L, Song L, Chakareski J, and Xu J (2019). Collaborative content placement among wireless edge caching stations with time-to-live cache. IEEE Transactions on Multimedia, 22(2): 432-444. https://doi.org/10.1109/TMM.2019.2929004   [Google Scholar]
  5. Dinh N and Kim Y (2022). An energy reward-based caching mechanism for information-centric Internet of Things. Sensors, 22(3): 743. https://doi.org/10.3390/s22030743   [Google Scholar] PMid:35161490 PMCid:PMC8840271
  6. Feng B, Tian A, Yu S, Li J, Zhou H, and Zhang H (2022). Efficient cache consistency management for transient IoT data in content-centric networking. IEEE Internet of Things Journal, 9(15): 12931-12944. https://doi.org/10.1109/JIOT.2022.3163776   [Google Scholar]
  7. Hamdi MM, Habbal A, Zakaria NH, and Hassan S (2018). Evaluation of caching strategies in content-centric networking (CCN) for mobile and social networking environment. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(2-4): 1-6.   [Google Scholar]
  8. Jaber G and Kacimi R (2020). A collaborative caching strategy for content-centric enabled wireless sensor networks. Computer Communications, 159: 60-70. https://doi.org/10.1016/j.comcom.2020.05.018   [Google Scholar]
  9. Ji Y, Zhang X, Liu W, and Zhang G (2021). Replacement based content popularity and cache gain for 6G content-centric network. Physical Communication, 44: 101238. https://doi.org/10.1016/j.phycom.2020.101238   [Google Scholar]
  10. Lee J, Lim K, and Yoo C (2013). Cache replacement strategies for scalable video streaming in CCN. In the 19th Asia-Pacific Conference on Communications, IEEE, Denpasar, Indonesia: 184-189. https://doi.org/10.1109/APCC.2013.6765939    [Google Scholar]
  11. Li H, Zhou H, Quan W, Feng B, and Zhang H (2019). CCNHCaching: A high-speed caching throughput simulator for information-centric networks. Journal of Internet Technology, 20(3): 705-715.   [Google Scholar]
  12. Liu Y, Zhi T, Zhou H, and Xi H (2021). PBRS: A content popularity and betweenness based cache replacement scheme in ICN-IoT. Journal of Internet Technology, 22(7): 1495-1508. https://doi.org/10.53106/160792642021122207004   [Google Scholar]
  13. Mastorakis S, Afanasyev A, and Zhang L (2017). On the evolution of ndnSIM: An open-source simulator for NDN experimentation. ACM SIGCOMM Computer Communication Review, 47(3): 19-33. https://doi.org/10.1145/3138808.3138812   [Google Scholar]
  14. Meddeb M, Dhraief A, Belghith A, Monteil T, Drira K, and Mathkour H (2019). Least fresh first cache replacement policy for NDN-based IoT networks. Pervasive and Mobile Computing, 52: 60-70. https://doi.org/10.1016/j.pmcj.2018.12.002   [Google Scholar]
  15. Miglani A, and Kumar N (2022). Blockchain-based co-operative caching for secure content delivery in CCN-enabled V2G networks. IEEE Transactions on Vehicular Technology, 72(4): 5274–5289. https://doi.org/10.1109/TVT.2022.3227291   [Google Scholar]
  16. Mishra S, Jain VK, Gyoda K, and Jain S (2023). An efficient content replacement policy to retain essential content in information-centric networking based Internet of Things network. Ad Hoc Networks, 155: 103389. https://doi.org/10.1016/j.adhoc.2023.103389   [Google Scholar]
  17. Naeem MA, Rehman MAU, Ullah R, and Kim BS (2020). A comparative performance analysis of popularity-based caching strategies in named data networking. IEEE Access, 8: 50057-50077. https://doi.org/10.1109/ACCESS.2020.2980385   [Google Scholar]
  18. Nikmard B, Movahhedinia N, and Khayyambashi MR (2022). Congestion avoidance by dynamically cache placement method in named data networking. The Journal of Supercomputing, 78(4): 5779–5805. https://doi.org/10.1007/s11227-021-04080-0   [Google Scholar]
  19. Paschos GS, Iosifidis G, Tao M, Towsley D, and Caire G (2018). The role of caching in future communication systems and networks. IEEE Journal on Selected Areas in Communications, 36(6): 1111-1125. https://doi.org/10.1109/JSAC.2018.2844939   [Google Scholar]
  20. Pfender J, Valera A, and Seah WK (2018). Performance comparison of caching strategies for information-centric IoT. In the Proceedings of the 5th ACM Conference on Information-Centric Networking, ACM, Boston, USA: 43-53. https://doi.org/10.1145/3267955.3267966   [Google Scholar]
  21. Pires S, Ribeiro A, and Sampaio L (2022, April). A meta-policy approach for learning suitable caching replacement policies in information-centric networks. In the Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, Association for Computing Machinery, Avila, Spain: 1950-1959. https://doi.org/10.1145/3477314.3507069   [Google Scholar]
  22. Putra MAP, Situmorang H, and Syambas NR (2019). Least recently frequently used replacement policy named data networking approach. In the International Conference on Electrical Engineering and Informatics, IEEE, Bandung, Indonesia: 423-427. https://doi.org/10.1109/ICEEI47359.2019.8988828   [Google Scholar]
  23. Rashid S, Razak SA, and Ghaleb FA (2021). IMU: A content replacement policy for CCN, based on immature content selection. Applied Sciences, 12(1): 344. https://doi.org/10.3390/app12010344   [Google Scholar]
  24. Saino L, Psaras I, and Pavlou G (2014). Icarus: A caching simulator for information centric networking (ICN). In the Proceedings of the 7th International Conference on Simulation Tools and Techniques and 7th International Conference on Simulation Tools and Techniques, ICST, Lisbon, Portugal, 7: 66-75. https://doi.org/10.4108/icst.simutools.2014.254630   [Google Scholar]
  25. Serhane O, Yahyaoui K, Nour B, and Moungla H (2020). A survey of ICN content naming and in-network caching in 5G and beyond networks. IEEE Internet of Things Journal, 8(6): 4081-4104. https://doi.org/10.1109/JIOT.2020.3022243   [Google Scholar]
  26. Shah MSM, Leau YB, Yan Z, and Anbar M (2022). Hierarchical naming scheme in named data networking for Internet of Things: A review and future security challenges. IEEE Access, 10: 19958-19970. https://doi.org/10.1109/ACCESS.2022.3151864   [Google Scholar]
  27. Silva ETD, Macedo JMHD, and Costa ALD (2022). NDN content store and caching policies: Performance evaluation. Computers, 11(3): 37. https://doi.org/10.3390/computers11030037   [Google Scholar]
  28. Singh P, Kumar R, Kannaujia S, and Sarma N (2021). Adaptive replacement cache policy in named data networking. In the International Conference on Intelligent Technologies, IEEE, Hubli, India: 1-5. https://doi.org/10.1109/CONIT51480.2021.9498489   [Google Scholar]
  29. Tortelli M, Rossi D, Boggia G, and Grieco LA (2016). ICN software tools: Survey and cross-comparison. Simulation Modelling Practice and Theory, 63: 23-46. https://doi.org/10.1016/j.simpat.2016.01.015   [Google Scholar]
  30. Victoria Priscilla C and Charulatha AR (2022). A deep dive comparison of cache replacement strategies: The quality of experience influencer. In the Computational Methods and Data Engineering: Proceedings of ICCMDE 2021, Springer Nature Singapore, Singapore, Singapore: 465-475. https://doi.org/10.1007/978-981-19-3015-7_34   [Google Scholar]
  31. Wang S and Ning Z (2022). Collaborative caching strategy in content-centric networking. In: Nicopolitidis P, Misra S, Yang LT, Zeigler B, and Ning Z (Eds.), Advances in computing, informatics, networking and cybersecurity: A book honoring professor Mohammad S. Obaidat’s significant scientific contributions: 465-511. Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-030-87049-2_16   [Google Scholar]
  32. Yu M, Li R, and Chen Y (2020). A cache replacement policy based on multi-factors for named data networking. Computers, Materials and Continua, 65(1): 321-336. https://doi.org/10.32604/cmc.2020.010831   [Google Scholar]