International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 2 (February 2024), Pages: 82-93

----------------------------------------------

 Original Research Paper

Stability and control of a plant epidemic model with pesticide intervention

 Author(s): 

 Balajied Me Syrti *, Anuradha Devi

 Affiliation(s):

 Department of Mathematics, The Assam Royal Global University, Guwahati-781035, India

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0009-0006-1141-1413

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.02.011

 Abstract

This paper introduces a model for studying plant epidemics that applies pesticides to control disease spread among two types of plant populations: those that are susceptible and those that are already infected. The model uses non-linear ordinary differential equations and the Holling type II response function to depict how disease spreads based on the number of susceptible plants available. The model is carefully checked for biological accuracy, ensuring characteristics such as positivity and boundedness. It defines points of equilibrium where the numbers of susceptible and infected plants stabilize. The study looks at scenarios with no infected plants (disease-free equilibrium) and scenarios where the disease continues to exist within the plant population (endemic equilibrium). The basic reproduction number, R0, is calculated to assess the system's stability. If R0 is less than 1, the disease is unlikely to spread widely, and the system is likely to return to being disease-free, both locally and globally, over time. However, if R0 is greater than 1, it indicates that the disease will persist in the population. This endemic state has also been shown to be stable both locally and globally. A sensitivity analysis helps identify key factors that affect disease spread and assists in forming strategies to manage the disease. Finally, numerical simulations are used to support the findings of the analysis.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Plant epidemic model, Stability, Routh-Hurwitz criterion, Lyapunov function, Sensitivity analysis

 Article history

 Received 31 August 2023, Received in revised form 1 January 2024, Accepted 26 January 2024

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Syrti BM and Devi A (2024). Stability and control of a plant epidemic model with pesticide intervention. International Journal of Advanced and Applied Sciences, 11(2): 82-93

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 

 Tables

 Table 1 Table 2 

----------------------------------------------   

 References (27)

  1. Anguelov R, Dufourd C, and Dumont Y (2017). Mathematical model for pest-insect control using mating disruption and trapping. Applied Mathematical Modelling, 52(1): 437-457. https://doi.org/10.1016/j.apm.2017.07.060   [Google Scholar]
  2. Arino O, Abdllaoui AE, Mikram J, and Chattopadhyay J (2004). Infection in prey population may act as a biological control in ratio-dependent predator-prey models. Nonlinearity, 17(3): 1101-1116. https://doi.org/10.1088/0951-7715/17/3/018   [Google Scholar]
  3. Bacaër N (2011). Lotka, Volterra and the predator–prey system (1920–1926). In: Bacaër N (Ed.), A short history of mathematical population dynamics: 71–76. Springer, London, UK. https://doi.org/10.1007/978-0-85729-115-8_13   [Google Scholar]
  4. Bairagi N and Adak D (2015). Complex dynamics of a predator–prey–parasite system: An interplay among infection rate, predator's reproductive gain and preference. Ecological Complexity, 22: 1-12. https://doi.org/10.1016/j.ecocom.2015.01.002   [Google Scholar]
  5. Birkhoff G and Rota GC (1982). Ordinary differential equations. Ginn, Boston, USA.   [Google Scholar]
  6. Brauer F (2005). The Kermack–McKendrick epidemic model revisited. Mathematical Biosciences, 198(2):119-131. https://doi.org/10.1016/j.mbs.2005.07.006   [Google Scholar] PMid:16135371
  7. Chowdhury J, Basir FA, Takeuchi Y, Roy PK, and Ghosh M (2019). A mathematical model for pest management in Jatropha curcas with integrated pesticides - An optimal control approach. Ecological Complexity, 37: 24-31. https://doi.org/10.1016/j.ecocom.2018.12.004   [Google Scholar]
  8. Fantaye AK and Birhanu ZK (2022). Mathematical model and analysis of corruption dynamics with optimal control. Journal of Applied Mathematics, 2022: 8073877. https://doi.org/10.1155/2022/8073877   [Google Scholar]
  9. Fantaye AK, Goshu MD, Zeleke BB, Gessesse AA, Endalew MF, and Birhanu ZK (2022). Mathematical model and stability analysis on the transmission dynamics of skin sores. Epidemiology and Infection, 150: e207. https://doi.org/10.1017/S0950268822001807   [Google Scholar] PMid:36397272 PMCid:PMC9987028
  10. Hilker FM and Schmitz K (2008). Disease-induced stabilization of predator–prey oscillations. Journal of Theoretical Biology, 255(3): 299-306. https://doi.org/10.1016/j.jtbi.2008.08.018   [Google Scholar] PMid:18801376
  11. Hsieh YH and Hsiao CK (2008). Predator-prey model with disease infection in both populations. Mathematical Medicine and Biology: A Journal of the IMA, 25(3):247-266. https://doi.org/10.1093/imammb/dqn017   [Google Scholar] PMid:18701422 PMCid:PMC7108608
  12. Hugo A and Simanjilo E (2019). Analysis of an eco-epidemiological model under optimal control measures for infected prey. Applications and Applied Mathematics: An International Journal, 14(1): 117-138.   [Google Scholar]
  13. Kar TK (2005). Stability analysis of a prey-predator model incorporating a prey refuge. Communications in Nonlinear Science and Numerical Simulation, 10(6): 681–691. https://doi.org/10.1016/j.cnsns.2003.08.006   [Google Scholar]
  14. Kermack W and McKendrick A (1991). Contributions to the mathematical theory of epidemics – I. Bulletin of Mathematical Biology, 53(1–2): 33–55. https://doi.org/10.1016/S0092-8240(05)80040-0   [Google Scholar] PMid:2059741
  15. Kermack WO and McKendrick AG (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772): 700-721. https://doi.org/10.1098/rspa.1927.0118   [Google Scholar]
  16. Lasalle JP (1976). The stability of dynamical systems. Society for Industrial and Applied Mathematics, Philadelphia, USA.   [Google Scholar]
  17. Lotka AJ (1910). Contribution to the theory of periodic reactions. The Journal of Physical Chemistry, 14(3): 271-274. https://doi.org/10.1021/j150111a004   [Google Scholar]
  18. Malthus T (2023). An essay on the principle of population. In: Hough P (Ed.), British Politics and the Environment in the Long Nineteenth Century: 77-84. Routledge, London, UK.   [Google Scholar]
  19. Ofuoku AU, Egho EO, and Enujeke EC (2009). Integrated pest management (IPM) adoption among farmers in central agro-ecological zone of delta state, Nigeria. Advances in Biological Research, 3(1-2): 29-33.   [Google Scholar]
  20. Overton K, Hoffmann AA, Reynolds OL, and Umina PA (2021). Toxicity of insecticides and Miticides to natural enemies in Australian grains. Insects, 12(2): 187. https://doi.org/10.3390/insects12020187   [Google Scholar] PMid:33671702 PMCid:PMC7927080
  21. Pal AK (2020). Effect of fear on a modified Lesli-Gower predator-prey eco-epidemiological model with disease in predator. Journal of Applied Mathematics and Informatics, 38(5-6): 375-406.   [Google Scholar]
  22. Pal AK and Samanta GP (2010). Stability analysis of an eco-epidemiological model incorporating a prey refuge. Nonlinear Analysis: Modelling and Control, 15(4): 473-491. https://doi.org/10.15388/NA.15.4.14319   [Google Scholar]
  23. Purnomo AS, Darti I, and Suryanto A (2017). Dynamics of eco-epidemiological model with harvesting. AIP Conference Proceedings, AIP Publishing, Malang, Indonesia, 1913(1): 020018. https://doi.org/10.1063/1.5016652   [Google Scholar]
  24. Rosa S and Torres DFM (2018). Parameter estimation, sensitivity analysis and optimal control of a periodic epidemic model with application to HRSV in Florida. Statistics Optimization and Information Computing, 6(1): 139-149. https://doi.org/10.19139/soic.v6i1.472   [Google Scholar]
  25. Schechtman H, Valle D, and Souza MO (2020). From resistance to persistence: Insights of a mathematical model on the indiscriminate use of insecticide. PLOS Neglected Tropical Diseases, 14(11): e0008862. https://doi.org/10.1371/journal.pntd.0008862   [Google Scholar] PMid:33206645 PMCid:PMC7723293
  26. Shorbaji FA, Roche B, Britton R, Andreou D, and Gozlan R (2017). Influence of predation on community resilience to disease. Journal of Animal Ecology, 86(5): 1147-1158. https://doi.org/10.1111/1365-2656.12722   [Google Scholar] PMid:28758196
  27. Themairi AA and Alqudah MA (2020). Predator-prey model of Holling-type II with harvesting and predator in disease. Italian Journal of Pure and Applied Mathematics, 43: 744-753.   [Google Scholar]