International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 11 (November 2024), Pages: 142-155

----------------------------------------------

 Original Research Paper

Dynamics of dark solitons in optical fibers governed by cubic-quintic discrete nonlinear Schrödinger equations

 Author(s): 

 Haves Qausar 1, Marwan Ramli 2, *, Said Munzir 2, Mahdhivan Syafwan 3

 Affiliation(s):

 1Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
 2Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
 3Department of Mathematics, Universitas Andalas, Padang 25163, Indonesia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-1225-9063

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.11.015

 Abstract

This study investigates the dynamics of dark solitons and energy distribution in electromagnetic waves propagating through optical fibers, focusing on the impact of key parameters on energy retention. While previous research has emphasized frequency and dispersion, this work also examines the effect of attenuation on soliton behavior. The energy distribution is analyzed using Hamiltonian dynamics derived from the cubic-quintic discrete nonlinear Schrödinger (CQ DNLS) equation, with stationary solutions obtained via the Trust Region Dogleg method and the fourth-order Runge-Kutta (RK4) method used for dynamic simulations. Results reveal that frequency and dispersion parameters enhance wave amplitude and energy, whereas high attenuation significantly reduces wave intensity and energy during propagation. Balancing these effects is critical for maintaining energy stability and providing insights into material selection for optical fibers with low attenuation properties.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Dark solitons, Optical fibers, Energy distribution, Attenuation effects, Hamiltonian dynamics

 Article history

 Received 17 July 2023, Received in revised form 23 December 2023, Accepted 30 October 2024

 Acknowledgment

The authors extend their gratitude to PMDSU Scholarship.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Qausar H, Ramli M, Munzir S, and Syafwan M (2024). Dynamics of dark solitons in optical fibers governed by cubic-quintic discrete nonlinear Schrödinger equations. International Journal of Advanced and Applied Sciences, 11(11): 142-155

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 

 Tables

 No Table

----------------------------------------------   

 References (42)

  1. Abdel-Gawad HI (2021). Solutions of the generalized transient stimulated Raman scattering equation. Optical pulses compression. Optik, 230: 166314. https://doi.org/10.1016/j.ijleo.2021.166314   [Google Scholar]
  2. Ahmadianfar I, Heidari AA, Gandomi AH, Chu X, and Chen H (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181: 115079. https://doi.org/10.1016/j.eswa.2021.115079   [Google Scholar]
  3. Baronio F, Frisquet B, Chen S, Millot G, Wabnitz S, and Kibler B (2018). Observation of a group of dark rogue waves in a telecommunication optical fiber. Physical Review A, 97(1): 013852. https://doi.org/10.1103/PhysRevA.97.013852   [Google Scholar]
  4. Biondini G and Lottes J (2019). Nonlinear interactions between solitons and dispersive shocks in focusing media. Physical Review E, 99(2): 022215. https://doi.org/10.1103/PhysRevE.99.022215   [Google Scholar] PMid:30934274
  5. Brust JJ, Marcia RF, and Petra CG (2019). Large-scale quasi-Newton trust-region methods with low-dimensional linear equality constraints. Computational Optimization and Applications, 74: 669-701. https://doi.org/10.1007/s10589-019-00127-4   [Google Scholar]
  6. Efe S and Yuce C (2015). Discrete rogue waves in an array of waveguides. Physics Letters, Section A: General, Atomic and Solid State Physics, 379(18-19): 1251-1255. https://doi.org/10.1016/j.physleta.2015.02.031   [Google Scholar]
  7. Gao XY, Guo YJ, and Shan WR (2021). Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system. Applied Mathematics Letters, 120: 107161. https://doi.org/10.1016/j.aml.2021.107161   [Google Scholar]
  8. Gninzanlong CL, Ndjomatchoua FT, and Tchawoua C (2018). Discrete breathers dynamic in a model for DNA chain with a finite stacking enthalpy. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(4): 043105. https://doi.org/10.1063/1.5009147   [Google Scholar] PMid:31906659
  9. Hosseini K, Mirzazadeh M, Baleanu D, Salahshour S, and Akinyemi L (2022). Optical solitons of a high-order nonlinear Schrödinger equation involving nonlinear dispersions and Kerr effect. Optical and Quantum Electronics, 54: 177. https://doi.org/10.1007/s11082-022-03522-0   [Google Scholar]
  10. Jia Q, Qiu H, and Mateo AM (2022). Soliton collisions in Bose-Einstein condensates with current-dependent interactions. Physical Review A, 106(6): 063314. https://doi.org/10.1103/PhysRevA.106.063314   [Google Scholar]
  11. Kartono A, Fatmawati VW, and Wahyudi ST (2020). Numerical solution of nonlinear Schrodinger approaches using the fourth-order Runge-Kutta method for predicting stock pricing. Journal of Physics: Conference Series, 1491: 012021. https://doi.org/10.1088/1742-6596/1491/1/012021   [Google Scholar]
  12. Kevrekidis PG (2009). The discrete nonlinear Schrödinger equation: Mathematical analysis, numerical computations and physical perspectives. Volume 232, Springer Science and Business Media, Berlin, Germany. https://doi.org/10.1007/978-3-540-89199-4   [Google Scholar]
  13. Kevrekidis PG and Carretero-González R (2009). A map approach to stationary solutions of the DNLS equation. In: Kevrekidis PG (Ed.), The discrete nonlinear schrödinger equation: Mathematical analysis, numerical computations and physical perspectives: 221-233. Volume 232, Springer Science and Business Media, Berlin, Germany. https://doi.org/10.1007/978-3-540-89199-4_11   [Google Scholar]
  14. Kimiaei M (2022). An active set trust-region method for bound-constrained optimization. Bulletin of the Iranian Mathematical Society, 48: 1721-1745. https://doi.org/10.1007/s41980-021-00610-x   [Google Scholar]
  15. Kourakis I and Shukla PK (2005). Discrete breather modes associated with vertical dust grain oscillations in dusty plasma crystals. Physics of Plasmas, 12(1): 014502. https://doi.org/10.1063/1.1824908   [Google Scholar]
  16. Liu X, Luan Z, Zhou Q, Liu W, and Biswas A (2019). Dark two-soliton solutions for nonlinear Schrödinger equations in inhomogeneous optical fibers. Chinese Journal of Physics, 61: 310-315. https://doi.org/10.1016/j.cjph.2019.08.006   [Google Scholar]
  17. Maluckov A, Hadžievski L, and Malomed BA (2007). Dark solitons in dynamical lattices with the cubic-quintic nonlinearity. Physical Review E, 76(4): 046605. https://doi.org/10.1103/PhysRevE.76.046605   [Google Scholar] PMid:17995125
  18. Mardi HA, Nasaruddin N, Ikhwan M, Nurmaulidar N, and Ramli M (2023). Soliton dynamics in optical fiber based on nonlinear Schrödinger equation. Heliyon, 9: e14235. https://doi.org/10.1016/j.heliyon.2023.e14235   [Google Scholar] PMid:36942232 PMCid:PMC10024108
  19. Motcheyo ABT, Kimura M, Doi Y, and Tchawoua C (2019). Supratransmission in discrete one-dimensional lattices with the cubic–quintic nonlinearity. Nonlinear Dynamics, 95: 2461-2468. https://doi.org/10.1007/s11071-018-4707-y   [Google Scholar]
  20. Motcheyo ABT, Tchawoua C, Siewe MS, and Tchameu JDT (2011). Multisolitons and stability of two hump solitons of upper cutoff mode in discrete electrical transmission line. Physics Letters A, 375(7): 1104-1109. https://doi.org/10.1016/j.physleta.2011.01.018   [Google Scholar]
  21. Motcheyo AT and Macías-Díaz JE (2023). Nonlinear bandgap transmission with zero frequency in a cross-stitch lattice. Chaos, Solitons and Fractals, 170: 113349. https://doi.org/10.1016/j.chaos.2023.113349   [Google Scholar]
  22. Motcheyo AT, Tchameu JT, Siewe MS, and Tchawoua C (2017). Homoclinic nonlinear band gap transmission threshold in discrete optical waveguide arrays. Communications in Nonlinear Science and Numerical Simulation, 50: 29-34. https://doi.org/10.1016/j.cnsns.2017.02.001   [Google Scholar]
  23. Okaly JB and Nkoa NT (2022). Nonlinear dynamics of DNA chain with long-range interactions. In: Zdravković S and Chevizovich D (Eds.), Nonlinear dynamics of nanobiophysics: 67-96. Springer Nature, Singapore, Singapore. https://doi.org/10.1007/978-981-19-5323-1_4   [Google Scholar]
  24. Ozisik M (2022). On the optical soliton solution of the (1+ 1) − dimensional perturbed NLSE in optical nano-fibers. Optik, 250: 168233. https://doi.org/10.1016/j.ijleo.2021.168233   [Google Scholar]
  25. Qausar H, Ramli M, Munzir S, Syafwan M, Susanto H, and Halfiani V (2020). Nontrivial on-site soliton solutions for stationary cubic-quintic discrete nonlinear Schrodinger equation. IAENG International Journal of Applied Mathematics, 50(2): 1-5. https://doi.org/10.2139/ssrn.3901859   [Google Scholar]
  26. Qi Y, Yang S, Wang J, Li L, Bai Z, Wang Y, and Lv Z (2022). Recent advance of emerging low-dimensional materials for vector soliton generation in fiber lasers. Materials Today Physics, 23: 100622. https://doi.org/10.1016/j.mtphys.2022.100622   [Google Scholar]
  27. Raza N, Hassan Z, and Seadawy A (2021). Computational soliton solutions for the variable coefficient nonlinear Schrödinger equation by collective variable method. Optical and Quantum Electronics, 53: 400. https://doi.org/10.1007/s11082-021-03052-1   [Google Scholar]
  28. Song Y, Shi X, Wu C, Tang D, and Zhang H (2019). Recent progress of study on optical solitons in fiber lasers. Applied Physics Reviews, 6(2): 021313. https://doi.org/10.1063/1.5091811   [Google Scholar]
  29. Susanto H and Karjanto N (2008). Calculated threshold of supratransmission phenomena in waveguide arrays with saturable nonlinearity. Journal of Nonlinear Optical Physics and Materials, 17(02): 159-165. https://doi.org/10.1142/S0218863508004147   [Google Scholar]
  30. Syafwan M and Arifin N (2018). Variational approximations for twisted solitons in a parametrically driven discrete nonlinear Schrödinger equation. Journal of Physics: Conference Series, 983(1): 012145. https://doi.org/10.1088/1742-6596/983/1/012145   [Google Scholar]
  31. Tang D, Guo J, Song Y, Zhang H, Zhao L, and Shen D (2014). Dark soliton fiber lasers. Optics Express, 22(16): 19831-19837. https://doi.org/10.1364/OE.22.019831   [Google Scholar] PMid:25321066
  32. Wang C, Nie Z, Xie W, Gao J, Zhou Q, and Liu W (2019). Dark soliton control based on dispersion and nonlinearity for third-order nonlinear Schrödinger equation. Optik, 184: 370-376. https://doi.org/10.1016/j.ijleo.2019.04.020   [Google Scholar]
  33. Wang L, Luan Z, Zhou Q, Biswas A, Alzahrani AK, and Liu W (2021). Effects of dispersion terms on optical soliton propagation in a lossy fiber system. Nonlinear Dynamics, 104: 629-637. https://doi.org/10.1007/s11071-021-06283-9   [Google Scholar]
  34. Wang S, Ma G, Zhang X, and Zhu D (2022). Dynamic behavior of optical soliton interactions in optical communication systems. Chinese Physics Letters, 39(11): 114202. https://doi.org/10.1088/0256-307X/39/11/114202   [Google Scholar]
  35. Wang X, Ding X, and Qu Q (2020). A new nonmonotone adaptive trust region line search method for unconstrained optimization. Journal of Mathematics in Industry, 10: 13. https://doi.org/10.1186/s13362-020-00080-6   [Google Scholar]
  36. Yan XW and Chen Y (2022). Soliton interaction of a generalized nonlinear Schrödinger equation in an optical fiber. Applied Mathematics Letters, 125: 107737. https://doi.org/10.1016/j.aml.2021.107737   [Google Scholar]
  37. Yang S, Zhang QY, Zhu ZW, Qi YY, Yin P, Ge YQ, and Zhang H (2022). Recent advances and challenges on dark solitons in fiber lasers. Optics and Laser Technology, 152: 108116. https://doi.org/10.1016/j.optlastec.2022.108116   [Google Scholar]
  38. Yao Y, Ma G, Zhang X, and Liu W (2019). M-typed dark soliton generation in optical fibers. Optik, 193: 162997. https://doi.org/10.1016/j.ijleo.2019.162997   [Google Scholar]
  39. Zanga D, Fewo SI, Tabi CB, and Kofané TC (2020). Modulational instability in weak nonlocal nonlinear media with competing Kerr and non-Kerr nonlinearities. Communications in Nonlinear Science and Numerical Simulation, 80: 104993. https://doi.org/10.1016/j.cnsns.2019.104993   [Google Scholar]
  40. Zhang AX, Hu XW, Zhang W, Liang JC, and Xue JK (2022). Nonlinear dynamics of tunable spin-orbit coupled Bose-Einstein condensates in deep optical lattices. Physics Letters A, 456: 128529. https://doi.org/10.1016/j.physleta.2022.128529   [Google Scholar]
  41. Zhao J, Luan Z, Zhang P, Dai C, Biswas A, Liu W, and Kudryashov NA (2020). Dark three-soliton for a nonlinear Schrödinger equation in inhomogeneous optical fiber. Optik, 220: 165189. https://doi.org/10.1016/j.ijleo.2020.165189   [Google Scholar]
  42. Zhao XH and Li S (2022). Dark soliton solutions for a variable coefficient higher-order Schrödinger equation in the dispersion decreasing fibers. Applied Mathematics Letters, 132: 108159. https://doi.org/10.1016/j.aml.2022.108159   [Google Scholar]