International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 11 (November 2024), Pages: 112-117

----------------------------------------------

 Original Research Paper

Association of serine racemase gene polymorphism with type 2 diabetes mellitus

 Author(s): 

 May Salem Al-Nbaheen *

 Affiliation(s):

 Public Health Department, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-4354-2726

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.11.012

 Abstract

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and β-cell dysfunction, with a significant global impact. Genome-wide association studies (GWAS) have identified several genetic polymorphisms linked to T2DM, including the rs391300 polymorphism in the SRR gene. This study aimed to evaluate the association between the rs391300 polymorphism and T2DM in the Saudi population. A total of 160 participants, comprising 80 T2DM patients and 80 healthy controls, were genotyped using quantitative PCR with VIC and FAM probes. The results revealed a significant association between T2DM and age, body mass index (BMI), glucose levels, and cholesterol levels. Genotype and allele frequency analysis demonstrated that the rs391300 polymorphism was linked to a higher risk of T2DM (GA vs. AA: OR = 4.75, 95% CI: 1.52–14.94, p = 0.04; A vs. G: OR = 4.33, 95% CI: 1.42–13.27, p = 0.005). Additionally, ANOVA analysis indicated a significant association with weight and BMI (p = 0.01). This study provides evidence of a positive association between the rs391300 polymorphism in the SRR gene and T2DM in the Saudi population.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Type 2 diabetes, Genetic polymorphism, SRR gene, Saudi population, Disease association

 Article history

 Received 3 August 2023, Received in revised form 27 February 2024, Accepted 29 October 2024

 Acknowledgment

No Acknowledgment.

 Compliance with ethical standards

 Ethical considerations

This study was conducted in compliance with the ethical standards outlined in the Declaration of Helsinki. Ethical approval was obtained from the ethics committee at King Saud University Hospital, Riyadh, Saudi Arabia. Informed consent was obtained from all participants prior to their inclusion in the study, ensuring their understanding of the study's purpose, procedures, potential risks, and benefits. Participant confidentiality and anonymity were strictly maintained throughout the study.

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Al-Nbaheen MS (2024). Association of serine racemase gene polymorphism with type 2 diabetes mellitus. International Journal of Advanced and Applied Sciences, 11(11): 112-117

 Permanent Link to this page

 Figures

 No Figure

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 

----------------------------------------------   

 References (31)

  1. Alharbi KK, Abudawood M, and Khan IA. (2021a). Amino-acid amendment of arginine-325-tryptophan in rs13266634 genetic polymorphism studies of the SLC30A8 gene with type 2 diabetes mellitus patients featuring a positive family history in the Saudi population. Journal of King Saud University-Science, 33(1): 101258. https://doi.org/10.1016/j.jksus.2020.101258   [Google Scholar]
  2. Alharbi KK, Alshammary AF, Aljabri OS, and Ali Khan IA (2021b). Relationship between serum amyloid A1 (SAA1) gene polymorphisms studies with obesity in the Saudi population. Diabetes, Metabolic Syndrome and Obesity, 14: 895-900. https://doi.org/10.2147/DMSO.S294948   [Google Scholar] PMid:33688224 PMCid:PMC7935349
  3. Al-Nbaheen MS (2022). Effect of genetic variations in the ADIPOQ gene on susceptibility to type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15: 2753-2761. https://doi.org/10.2147/DMSO.S377057   [Google Scholar] PMid:36101664 PMCid:PMC9464438
  4. Alshammary AF and Khan IA (2021). Screening of obese offspring of first-cousin consanguineous subjects for the angiotensin-converting enzyme gene with a 287-bp Alu sequence. Journal of Obesity and Metabolic Syndrome, 30(1): 63-71. https://doi.org/10.7570/jomes20086   [Google Scholar] PMid:33653971 PMCid:PMC8017326
  5. Alshammary AF, Alshammari AM, Alsobaie SF, Alageel AA, and Khan IA (2023a). Evidence from genetic studies among rs2107538 variant in the CCL5 gene and Saudi patients diagnosed with type 2 diabetes mellitus. Saudi Journal of Biological Sciences, 30(6): 103658. https://doi.org/10.1016/j.sjbs.2023.103658   [Google Scholar] PMid:37181637 PMCid:PMC10172835
  6. Alshammary AF, Alshammari AM, Farzan R, Alsobaie SF, Alageel AA, and Khan IA (2023b). A study on the immunological vitality of an inflammatory biomarker explored with rs5743708 polymorphism in TLR2 gene among Saudi women confirmed with polycystic ovarian syndrome. Saudi Journal of Biological Sciences, 30(7): 103687. https://doi.org/10.1016/j.sjbs.2023.103687   [Google Scholar] PMid:37485450 PMCid:PMC10362453
  7. Alwadeai KS and Alhammad SA (2023). Prevalence of type 2 diabetes mellitus and related factors among the general adult population in Saudi Arabia between 2016–2022: A systematic review and meta-analysis of the cross-sectional studies. Medicine, 102(24): e34021. https://doi.org/10.1097/MD.0000000000034021   [Google Scholar] PMid:37327272 PMCid:PMC10270537
  8. Alzaheb RA and Altemani AH (2020). Prevalence and associated factors of dyslipidemia among adults with type 2 diabetes mellitus in Saudi Arabia. Diabetes, Metabolic Syndrome and Obesity, 13: 4033-4040. https://doi.org/10.2147/DMSO.S246068   [Google Scholar] PMid:33149642 PMCid:PMC7604430
  9. Alzahrani FM, Alhassan JA, Alshehri AM, Farooqi FA, Aldossary MA, Abdelghany MK, and El-Masry OS (2023). The impact of SELP gene Thr715Pro polymorphism on sP-selectin level and association with cardiovascular disease in Saudi diabetic patients: A cross-sectional case-control study. Saudi Journal of Biological Sciences, 30(3): 103579. https://doi.org/10.1016/j.sjbs.2023.103579   [Google Scholar] PMid:36844639 PMCid:PMC9944555
  10. Bailey CJ, Flatt PR, and Conlon JM (2023). An update on peptide-based therapies for type 2 diabetes and obesity. Peptides, 161: 170939. https://doi.org/10.1016/j.peptides.2023.170939   [Google Scholar] PMid:36608818
  11. Charan J and Biswas T (2013). How to calculate sample size for different study designs in medical research? Indian Journal of Psychological Medicine, 35(2): 121-126. https://doi.org/10.4103/0253-7176.116232   [Google Scholar] PMid:24049221 PMCid:PMC3775042
  12. Dayeh TA, Olsson AH, Volkov P, Almgren P, Rönn T, and Ling C (2013). Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia, 56: 1036-1046. https://doi.org/10.1007/s00125-012-2815-7   [Google Scholar] PMid:23462794 PMCid:PMC3622750
  13. Dong M, Gong ZC, Dai XP, Lei GH, Lu HB, Fan L, and Liu ZQ (2011). Serine racemase rs391300 G/A polymorphism influences the therapeutic efficacy of metformin in Chinese patients with diabetes mellitus type 2. Clinical and Experimental Pharmacology and Physiology, 38(12): 824-829. https://doi.org/10.1111/j.1440-1681.2011.05610.x   [Google Scholar] PMid:21933224
  14. El-Lebedy D, Raslan HM, and Mohammed AM (2016). Apolipoprotein E gene polymorphism and risk of type 2 diabetes and cardiovascular disease. Cardiovascular Diabetology, 15: 12. https://doi.org/10.1186/s12933-016-0329-1   [Google Scholar] PMid:26800892 PMCid:PMC4724147
  15. Girard H, Potvin O, Nugent S, Dallaire-Théroux C, and Cunnane S et al. (2018). Faster progression from MCI to probable AD for carriers of a single-nucleotide polymorphism associated with type 2 diabetes. Neurobiology of Aging, 64: 157.e11-157.e17. https://doi.org/10.1016/j.neurobiolaging.2017.11.013   [Google Scholar] PMid:29338921
  16. Imamura M, Iwata M, Maegawa H, Watada H, Hirose H, and Tanaka Y et al. (2013). Replication study for the association of rs391300 in SRR and rs17584499 in PTPRD with susceptibility to type 2 diabetes in a Japanese population. Journal of Diabetes Investigation, 4(2): 168-173. https://doi.org/10.1111/jdi.12017   [Google Scholar] PMid:24843648 PMCid:PMC4019271
  17. Khan IA (2021). Do second generation sequencing techniques identify documented genetic markers for neonatal diabetes mellitus? Heliyon, 7(9): e07903. https://doi.org/10.1016/j.heliyon.2021.e07903   [Google Scholar] PMid:34584998 PMCid:PMC8455689
  18. Khan IA, Jahan P, Hasan Q, and Rao P (2019). Genetic confirmation of T2DM meta-analysis variants studied in gestational diabetes mellitus in an Indian population. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 13(1): 688-694. https://doi.org/10.1016/j.dsx.2018.11.035   [Google Scholar] PMid:30641791
  19. Khan IA, Vattam KK, Jahan P, Mukkavali KK, Hasan Q, and Rao P (2015). Correlation between KCNQ1 and KCNJ11 gene polymorphisms and type 2 and post-transplant diabetes mellitus in the Asian Indian population. Genes and Diseases, 2(3): 276-282. https://doi.org/10.1016/j.gendis.2015.02.009   [Google Scholar] PMid:30258870 PMCid:PMC6150093
  20. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, and Al Kaabi J (2020). Epidemiology of type 2 diabetes–Global burden of disease and forecasted trends. Journal of Epidemiology and Global Health, 10: 107-111. https://doi.org/10.2991/jegh.k.191028.001   [Google Scholar] PMid:32175717 PMCid:PMC7310804
  21. Malkki M and Petersdorf EW (2012). Genotyping of single nucleotide polymorphisms by 5′ nuclease allelic discrimination. In: Christiansen F and Tait B (Eds.), Immunogenetics: Methods in molecular biology: 173-182. Humana Press, Totowa, USA. https://doi.org/10.1007/978-1-61779-842-9_10   [Google Scholar] PMid:22665234 PMCid:PMC3887036
  22. Naseri K, Saadati S, Ghaemi F, Ashtary-Larky D, Asbaghi O, Sadeghi A, and de Courten B (2023). The effects of probiotic and synbiotic supplementation on inflammation, oxidative stress, and circulating adiponectin and leptin concentration in subjects with prediabetes and type 2 diabetes mellitus: A GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. European Journal of Nutrition, 62: 543-561. https://doi.org/10.1007/s00394-022-03012-9   [Google Scholar] PMid:36239789 PMCid:PMC9941248
  23. Raza W, Ghafoor S, Abbas SZ, and Muhammad SA (2020). Polymorphic evaluation of NFKBIA and SRR with type 2 diabetes mellitus in population of southern Punjab. Meta Gene, 26: 100803. https://doi.org/10.1016/j.mgene.2020.100803   [Google Scholar]
  24. Shephard DA (1976). The 1975 declaration of Helsinki and consent. Canadian Medical Association Journal, 115(12): 1191-1192.   [Google Scholar] PMid:1000449 PMCid:PMC1878977
  25. Shu XO, Long J, Cai Q, Qi L, Xiang YB, and Cho YS et al. (2010). Identification of new genetic risk variants for type 2 diabetes. PLOS Genetics, 6(9): e1001127. https://doi.org/10.1371/journal.pgen.1001127   [Google Scholar] PMid:20862305 PMCid:PMC2940731
  26. Sun XF, Xiao XH, Zhang ZX, Liu Y, Xu T, and Zhu XL et al. (2015). Positive association between type 2 diabetes risk alleles near CDKAL1 and reduced birthweight in Chinese Han individuals. Chinese Medical Journal, 128(14): 1873-1878. https://doi.org/10.4103/0366-6999.160489   [Google Scholar] PMid:26168825 PMCid:PMC4717941
  27. Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, and Chang CT et al. (2010). A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLOS Genetics, 6(2): e1000847. https://doi.org/10.1371/journal.pgen.1000847   [Google Scholar] PMid:20174558 PMCid:PMC2824763
  28. Uffelmann E, Huang QQ, Munung NS, De Vries J, Okada Y, and Martin AR et al. (2021). Genome-wide association studies. Nature Reviews Methods Primers, 1: 59. https://doi.org/10.1038/s43586-021-00056-9   [Google Scholar]
  29. Wang S, Wang X, Bai F, Shi X, Zhou T, and Li F (2023). Effect of endodontic treatment on clinical outcome in type 2 diabetic patients with apical periodontitis. Heliyon, 9(3): e13914. https://doi.org/10.1016/j.heliyon.2023.e13914   [Google Scholar] PMid:36925517 PMCid:PMC10011187
  30. Wang Y, Nie M, Li W, Ping F, Hu Y, Ma L, and Liu J (2011). Association of six single nucleotide polymorphisms with gestational diabetes mellitus in a Chinese population. PLOS ONE, 6(11): e26953. https://doi.org/10.1371/journal.pone.0026953   [Google Scholar] PMid:22096510 PMCid:PMC3214026
  31. Zhang S, Xiao J, Ren Q, Han X, Tang Y, Yang W, and Ji L (2014). Association of serine racemase gene variants with type 2 diabetes in the Chinese Han population. Journal of Diabetes Investigation, 5(3): 286-289. https://doi.org/10.1111/jdi.12145   [Google Scholar] PMid:24843776 PMCid:PMC4020332