International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 10 (October 2024), Pages: 147-156

----------------------------------------------

 Original Research Paper

Efficient wastewater management for smart cities using Internet of Things (IoT) and blockchain technology

 Author(s): 

 Abdullah I. A. Alzahrani 1, *, Sajjad Hussain Chauhdary 2, Abdulrahman A. Alshdadi 3

 Affiliation(s):

 1Department of Computer Science, Scientific Departments in Al Quwaiiyah, Shaqra University, Shaqra 11961, Saudi Arabia
 2Department of Computer Science and Artificial Intelligence, College of Computer Science and Engineering, University of Jeddah, Jeddah 23890, Saudi Arabia
 3Department of Information Systems and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah 23890, Saudi Arabia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-4718-7568

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.10.017

 Abstract

Access to clean and sufficient water is considered a basic right for humans and other living organisms sharing the environment. However, factors like rapid urban growth, climate change, population increase, and the overproduction of industrial and agricultural goods have contributed to water shortages and quality problems in many communities worldwide. Digital technologies, such as blockchain, machine learning, and the Internet of Things (IoT), offer opportunities to develop new solutions for creating smart and sustainable environments. In this paper, we introduce a unified water management system (IB-WMS) using IoT and blockchain technologies to monitor water quality, level, temperature, pressure, and consumption. This system is designed to be reliable, scalable, and transparent due to the integration of blockchain and IoT. Simulations indicate that the IB-WMS system achieves 89% efficiency, a 90% wastewater reuse rate, and a 95% water recycling rate.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Water scarcity, Blockchain, IoT, Water management, Sustainability

 Article history

 Received 7 June 2024, Received in revised form 21 September 2024, Accepted 6 October 2024

 Acknowledgment

The authors extend their appreciation to the deanship of scientific research at Shaqra University for funding this research work through the project number (SU-ANN-202205).

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Alzahrani AIA, Chauhdary SH, and Alshdadi AA (2024). Efficient wastewater management for smart cities using Internet of Things (IoT) and blockchain technology. International Journal of Advanced and Applied Sciences, 11(10): 147-156

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 

 Tables

 Table 1 

----------------------------------------------   

 References (28)

  1. Ait-Kadi M (2016). Water for development and development for water: Realizing the sustainable development goals (SDGs) vision. Aquatic Procedia, 6: 106-110. https://doi.org/10.1016/j.aqpro.2016.06.013   [Google Scholar]
  2. Amador-Castro F, González-López ME, Lopez-Gonzalez G, Garcia-Gonzalez A, Díaz-Torres O, Carbajal-Espinosa O, and Gradilla-Hernández MS (2024). Internet of Things and citizen science as alternative water quality monitoring approaches and the importance of effective water quality communication. Journal of Environmental Management, 352: 119959. https://doi.org/10.1016/j.jenvman.2023.119959   [Google Scholar] PMid:38194871
  3. Bain R, Johnston R, and Slaymaker T (2020). Drinking water quality and the SDGs. NPJ Clean Water, 3: 37. https://doi.org/10.1038/s41545-020-00085-z   [Google Scholar]
  4. Chohan UW (2019). Blockchain and environmental sustainability: Case of IBM's blockchain water management. Notes on the 21st Century (CBRI). https://doi.org/10.2139/ssrn.3334154   [Google Scholar]
  5. Crini G and Lichtfouse E (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17: 145-155. https://doi.org/10.1007/s10311-018-0785-9   [Google Scholar]
  6. Daigger GT (2007). Wastewater management in the 21st century. Journal of Environmental Engineering, 133(7): 671-680. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:7(671)   [Google Scholar]
  7. Della Valle F and Oliver M (2021). Blockchain-based information management for supply chain data-platforms. Applied Sciences, 11(17): 8161. https://doi.org/10.3390/app11178161   [Google Scholar]
  8. Dogo EM, Salami AF, Nwulu NI, and Aigbavboa CO (2019). Blockchain and Internet of Things-based technologies for intelligent water management system. In: Al-Turjman F (Ed.), Artificial intelligence in IoT: Transactions on computational science and computational intelligence: 129-150. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-030-04110-6_7   [Google Scholar]
  9. Droste RL and Gehr RL (2018). Theory and practice of water and wastewater treatment. John Wiley and Sons, Hoboken, USA.   [Google Scholar]
  10. González-Vidal A, Cuenca-Jara J, and Skarmeta AF (2019). IoT for water management: Towards intelligent anomaly detection. In the IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland: 858-863. https://doi.org/10.1109/WF-IoT.2019.8767190   [Google Scholar]
  11. Hakak S, Khan WZ, Gilkar GA, Haider N, Imran M, and Alkatheiri MS (2020). Industrial wastewater management using blockchain technology: Architecture, requirements, and future directions. IEEE Internet of Things Magazine, 3(2): 38-43. https://doi.org/10.1109/IOTM.0001.1900092   [Google Scholar]
  12. Jacobsen M, Webster M, and Vairavamoorthy K (2012). The future of water in African cities: Why waste water? World Bank Publications, Chicago, USA. https://doi.org/10.1596/978-0-8213-9721-3   [Google Scholar]
  13. Jeong S and Park J (2020). Evaluating urban water management using a water metabolism framework: A comparative analysis of three regions in Korea. Resources, Conservation and Recycling, 155: 104597. https://doi.org/10.1016/j.resconrec.2019.104597   [Google Scholar]
  14. Kaarthik K, Harshini S, Karthika M, and Kripanandhini T (2023). A novel approach on IoT based waste water management system in industries. In the Second International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India: 572-576. https://doi.org/10.1109/ICEARS56392.2023.10085533   [Google Scholar]
  15. Kalirajan K, Nambiar MV, Vinodhini K, and Ramya E (2021). IoT based industrial waste water monitoring and recycling. Journal of Physics: Conference Series, 1916: 012119. https://doi.org/10.1088/1742-6596/1916/1/012119   [Google Scholar]
  16. Kassou M, Bourekkadi S, Khoulji S, Slimani K, Chikri H, and Kerkeb ML (2021). Blockchain-based medical and water waste management conception. In the E3S Web of Conferences: The International Conference on Innovation, Modern Applied Science and Environmental Studies, EDP Sciences, 234: 00070. https://doi.org/10.1051/e3sconf/202123400070   [Google Scholar]
  17. Landa-Cansigno O, Behzadian K, Davila-Cano DI, and Campos LC (2020). Performance assessment of water reuse strategies using integrated framework of urban water metabolism and water-energy-pollution nexus. Environmental Science and Pollution Research, 27(5): 4582-4597. https://doi.org/10.1007/s11356-019-05465-8   [Google Scholar] PMid:31129899 PMCid:PMC7028841
  18. Narendran S, Pradeep P, and Ramesh MV (2017). An Internet of Things (IoT) based sustainable water management. In the IEEE Global Humanitarian Technology Conference, IEEE, San Jose, USA: 1-6. https://doi.org/10.1109/GHTC.2017.8239320   [Google Scholar]
  19. Nie X, Fan T, Wang B, Li Z, Shankar A, and Manickam A (2020). Big data analytics and IoT in operation safety management in under water management. Computer Communications, 154: 188-196. https://doi.org/10.1016/j.comcom.2020.02.052   [Google Scholar]
  20. Pereira MA and Marques RC (2021). Sustainable water and sanitation for all: Are we there yet? Water Research, 207: 117765. https://doi.org/10.1016/j.watres.2021.117765   [Google Scholar] PMid:34731660
  21. Salam A, Raza U, Salam A, and Raza U (2020). Autonomous irrigation management in decision agriculture. In: Salam A and Raza U (Eds.), Signals in the soil: Developments in Internet of underground things: 379-398. Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-030-50861-6_12   [Google Scholar]
  22. Salleh A (2016). Climate, water, and livelihood skills: A post-development reading of the SDGs. Globalizations, 13(6): 952-959. https://doi.org/10.1080/14747731.2016.1173375   [Google Scholar]
  23. Satilmisoglu TK, Sermet Y, Kurt M, and Demir I (2024). Blockchain opportunities for water resources management: A comprehensive review. Sustainability, 16(6): 2403. https://doi.org/10.3390/su16062403   [Google Scholar]
  24. Semadeni-Davies A (2004). Urban water management vs. climate change: Impacts on cold region waste water inflows. Climatic Change, 64(1): 103-126. https://doi.org/10.1023/B:CLIM.0000024669.22066.04   [Google Scholar]
  25. Sørup HJ, Brudler S, Godskesen B, Dong Y, Lerer SM, Rygaard M, and Arnbjerg-Nielsen K (2020). Urban water management: Can UN SDG 6 be met within the planetary boundaries? Environmental Science and Policy, 106: 36-39. https://doi.org/10.1016/j.envsci.2020.01.015   [Google Scholar]
  26. Spirandelli D, Dean T, Babcock Jr R, and Braich E (2019). Policy gap analysis of decentralized wastewater management on a developed pacific island. Journal of Environmental Planning and Management, 62(14): 2506-2528. https://doi.org/10.1080/09640568.2019.1565817   [Google Scholar]
  27. Villarín MC and Merel S (2020). Paradigm shifts and current challenges in wastewater management. Journal of Hazardous Materials, 390: 122139. https://doi.org/10.1016/j.jhazmat.2020.122139   [Google Scholar] PMid:32007860
  28. Xia W, Chen X, and Song C (2022). A framework of blockchain technology in intelligent water management. Frontiers in Environmental Science, 10: 909606. https://doi.org/10.3389/fenvs.2022.909606   [Google Scholar]