International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 11, Issue 10 (October 2024), Pages: 114-121

----------------------------------------------

 Technical Note

An enhanced AI-based model for financial fraud detection

 Author(s): 

 Ahmed H. Ali 1, *, Ahmed Ali Hagag 2

 Affiliation(s):

 1Department of Electrical Quantities Metrology, National Institute of Standards (NIS), Giza, Egypt
 2Ministry of Communication and Information Technology, Giza, Egypt

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-8141-750X

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2024.10.013

 Abstract

The research seeks to identify complex fraudulent activities. Artificial intelligence (AI) techniques, such as machine learning and deep learning, have shown significant potential in enhancing the accuracy and efficiency of fraud detection models. This study introduces a novel AI-based fraud detection model that combines both supervised and unsupervised learning methods. The proposed machine learning system uses these techniques to detect fraudulent transactions. The supervised learning component is trained using a labeled dataset that includes both fraudulent and non-fraudulent transactions. The dataset used in the research contains 284,807 credit card transactions. After preparing the data, four Python-based models were developed. The K-Nearest Neighbors (KNN) model successfully predicted 99.94% of credit card transactions as valid or fraudulent. A random forest (RF) model was also used to assess the legitimacy of transactions, achieving an accuracy score of 99.96% correctly classifying nearly all data points. The Support Vector Machine (SVM) model achieved 99.94% accuracy, misclassifying only 51 cases. The logistic regression (LR) model attained an accuracy of 99.92% with 70 misclassifications and 99.91% with 77 misclassifications. These models demonstrate high accuracy and efficiency.

 © 2024 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Fraud detection, Machine learning, Supervised learning, Credit card transactions, Accuracy

 Article history

 Received 29 April 2024, Received in revised form 23 August 2024, Accepted 3 October 2024

 Acknowledgment

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Ali AH and Hagag AA (2024). An enhanced AI-based model for financial fraud detection. International Journal of Advanced and Applied Sciences, 11(10): 114-121

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 

 Tables

 Table 1 Table 2 

----------------------------------------------   

 References (30)

  1. Abakarim Y, Lahby M, and Attioui A (2018). An efficient real time model for credit card fraud detection based on deep learning. In the Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications, ACM, Rabat, Morocco: 1-7. https://doi.org/10.1145/3289402.3289530   [Google Scholar]
  2. Alfaiz NS and Fati SM (2022). Enhanced credit card fraud detection model using machine learning. Electronics, 11(4): 662. https://doi.org/10.3390/electronics11040662   [Google Scholar]
  3. Arora V, Leekha RS, Lee K, and Kataria A (2020). Facilitating user authorization from imbalanced data logs of credit cards using artificial intelligence. Mobile Information Systems, 2020: 8885269. https://doi.org/10.1155/2020/8885269   [Google Scholar]
  4. Balogun AO, Basri S, Abdulkadir SJ, and Hashim AS (2019). Performance analysis of feature selection methods in software defect prediction: A search method approach. Applied Sciences, 9(13): 2764. https://doi.org/10.3390/app9132764   [Google Scholar]
  5. Błaszczyński J, de Almeida Filho AT, Matuszyk A, Szeląg M, and Słowiński R (2021). Auto loan fraud detection using dominance-based rough set approach versus machine learning methods. Expert Systems with Applications, 163: 113740. https://doi.org/10.1016/j.eswa.2020.113740   [Google Scholar]
  6. Branco B, Abreu P, Gomes AS, Almeida MS, Ascensão JT, and Bizarro P (2020). Interleaved sequence RNNs for fraud detection. In the Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, CA, USA: 3101-3109. https://doi.org/10.1145/3394486.3403361   [Google Scholar]
  7. Breiman L (2001). Random forests. Machine Learning, 45: 5-32. https://doi.org/10.1023/A:1010933404324   [Google Scholar]
  8. Cartella F, Anunciacao O, Funabiki Y, Yamaguchi D, Akishita T, and Elshocht O (2021). Adversarial attacks for tabular data: Application to fraud detection and imbalanced data. Arxiv Preprint Arxiv:2101. https://doi.org/10.48550/arXiv.2101.08030   [Google Scholar]
  9. Chawla NV, Bowyer KW, Hall LO, and Kegelmeyer WP (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16: 321-357. https://doi.org/10.1613/jair.953   [Google Scholar]
  10. Chen JIZ and Lai KL (2021). Deep convolution neural network model for credit-card fraud detection and alert. Journal of Artificial Intelligence, 3(2): 101-112. https://doi.org/10.36548/jaicn.2021.2.003   [Google Scholar]
  11. Domínguez-Almendros S, Benítez-Parejo N, and Gonzalez-Ramirez AR (2011). Logistic regression models. Allergologia et Immunopathologia, 39(5): 295-305. https://doi.org/10.1016/j.aller.2011.05.002   [Google Scholar] PMid:21820234
  12. Fiore U, De Santis A, Perla F, Zanetti P, and Palmieri F (2019). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 479: 448-455. https://doi.org/10.1016/j.ins.2017.12.030   [Google Scholar]
  13. He H and Garcia EA (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9): 1263-1284. https://doi.org/10.1109/TKDE.2008.239   [Google Scholar]
  14. Kim J, Kim HJ, and Kim H (2019). Fraud detection for job placement using hierarchical clusters-based deep neural networks. Applied Intelligence, 49(8): 2842-2861. https://doi.org/10.1007/s10489-019-01419-2   [Google Scholar]
  15. Kolachalama VB and Garg PS (2018). Machine learning and medical education. NPJ Digital Medicine, 1: 54. https://doi.org/10.1038/s41746-018-0061-1   [Google Scholar] PMid:31304333 PMCid:PMC6550167
  16. Kousika N, Deepa S, Deephika C, Dhatchaiyine BM, and Amrutha J (2021). A system for fake news detection by using supervised learning model for social media contents. In the 5th International Conference on Intelligent Computing and Control Systems, IEEE, Madurai, India: 1042-1047. https://doi.org/10.1109/ICICCS51141.2021.9432096   [Google Scholar]
  17. Krizhevsky A, Sutskever I, and Hinton GE (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25: 1097–1105.   [Google Scholar]
  18. Lad SS and Adamuthe AC (2020). Malware classification with improved convolutional neural network model. International Journal of Computer Network and Information Security, 9(6): 30-43. https://doi.org/10.5815/ijcnis.2020.06.03   [Google Scholar]
  19. LeCun Y, Bengio Y, and Hinton G (2015). Deep learning. Nature, 521(7553): 436-444. https://doi.org/10.1038/nature14539   [Google Scholar] PMid:26017442
  20. Lucas Y and Jurgovsky J (2020). Credit card fraud detection using machine learning: A survey. Arxiv Preprint Arxiv:2010.06479. https://doi.org/10.48550/arXiv.2010.06479   [Google Scholar]
  21. Mahesh B (2020). Machine learning algorithms-A review. International Journal of Science and Research, 9(1): 381-386. https://doi.org/10.21275/ART20203995   [Google Scholar]
  22. Matloob I, Khan SA, and Rahman HU (2020). Sequence mining and prediction-based healthcare fraud detection methodology. IEEE Access, 8: 143256-143273. https://doi.org/10.1109/ACCESS.2020.3013962   [Google Scholar]
  23. Molina D, LaTorre A, and Herrera F (2018). SHADE with iterative local search for large-scale global optimization. In the IEEE Congress on Evolutionary Computation, IEEE, Rio de Janeiro, Brazil: 1-8. https://doi.org/10.1109/CEC.2018.8477755   [Google Scholar]
  24. Ngai EW, Hu Y, Wong YH, Chen Y, and Sun X (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision support systems, 50(3): 559-569. https://doi.org/10.1016/j.dss.2010.08.006   [Google Scholar]
  25. Phua C, Lee V, Smith K, and Gayler R (2010). A comprehensive survey of data mining-based fraud detection research. ArXiv Preprint ArXiv:1009.6119. https://doi.org/10.48550/arXiv.1009.6119   [Google Scholar]
  26. Puh M and Brkić L (2019). Detecting credit card fraud using selected machine learning algorithms. In the 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics, IEEE, Opatija, Croatia: 1250-1255. https://doi.org/10.23919/MIPRO.2019.8757212   [Google Scholar]
  27. Taha AA and Malebary SJ (2020). An intelligent approach to credit card fraud detection using an optimized light gradient boosting machine. IEEE Access, 8: 25579-25587. https://doi.org/10.1109/ACCESS.2020.2971354   [Google Scholar]
  28. Trivedi NK, Simaiya S, Lilhore UK, and Sharma SK (2020). An efficient credit card fraud detection model based on machine learning methods. International Journal of Advanced Science and Technology, 29(5): 3414-3424.   [Google Scholar]
  29. Vengatesan K, Kumar A, Yuvraj S, Kumar V, and Sabnis S (2020). Credit card fraud detection using data analytic techniques. Advances in Mathematics: Scientific Journal, 9(3): 1185-1196. https://doi.org/10.37418/amsj.9.3.43   [Google Scholar]
  30. West D, Dellana S, and Qian J (2005). Neural network ensemble strategies for financial decision applications. Computers and Operations Research, 32(10): 2543-2559. https://doi.org/10.1016/j.cor.2004.03.017   [Google Scholar]