International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 2 (February 2023), Pages: 166-174

----------------------------------------------

 Original Research Paper

 Numerical solution for MHD flow and heat transfer of Maxwell fluid over a stretching sheet

 Author(s): 

 Faisal Salah *, A. Alqarni

 Affiliation(s):

 Department of Mathematics, College of Science and Arts, King Abdul-Aziz University, Jeddah, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-0410-001X

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2023.02.020

 Abstract:

In this article, the numerical solutions for the flow of heat transfer for an incompressible Maxwell fluid on a stretching sheet channel are presented in this study. By applying appropriate transformations, the system of governing partial differential equations is transformed into a system of ordinary differential equations. A successive linearization method (SLM) is used to describe and solve the resulting nonlinear equations numerically using MATLAB software. The main goal of this paper is to compare the results of solving the velocity and temperature equations in the presence of β1 changes through SLM for introducing it as a precise and appropriate method for solving nonlinear differential equations. Tables with the numerical results are created for comparison. This contrast is important because it shows how precisely the successive linearization method can resolve a set of nonlinear differential equations. Non-Newtonian parameters on the flow field, like mixed convection, Hartman, Deborah, and Prandtl numbers, are explored and illustrated graphically. Apart from that, a great deal of agreement has been seen between the current results and the published data that have been evaluated and compared in a limited way.

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Maxwell fluid, Successive linearization, Heat transfer, MHD, Stretching sheet channel

 Article History: Received 12 July 2022, Received in revised form 24 October 2022, Accepted 7 November 2022

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Salah F and Alqarni A (2023). Numerical solution for MHD flow and heat transfer of Maxwell fluid over a stretching sheet. International Journal of Advanced and Applied Sciences, 10(2): 166-174

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 

 Tables

 Table 1 Table 2 

----------------------------------------------    

 References (39)

  1. Abdal S, Siddique I, Alrowaili D, Al-Mdallal Q, and Hussain S (2022). Exploring the magnetohydrodynamic stretched flow of Williamson Maxwell nanofluid through porous matrix over a permeated sheet with bioconvection and activation energy. Scientific Reports, 12: 278. https://doi.org/10.1038/s41598-021-04581-1   [Google Scholar] PMid:34997184 PMCid:PMC8741956
  2. Ahmed MAM, Mohammed ME, and Khidir AA (2015). On linearization method to MHD boundary layer convective heat transfer with low pressure gradient. Propulsion and Power Research, 4(2): 105-113. https://doi.org/10.1016/j.jppr.2015.04.001   [Google Scholar]
  3. Aman S and Almdallal Q (2019). SA-copper based Maxwell nanofluid flow with second order slip effect using fractional derivatives. In the AIP Conference Proceedings, AIP Publishing, 2116: 030021. https://doi.org/10.1063/1.5114005   [Google Scholar]
  4. Aman S, Al-Mdallal Q, and Khan I (2020). Heat transfer and second order slip effect on MHD flow of fractional Maxwell fluid in a porous medium. Journal of King Saud University-Science, 32(1): 450-458. https://doi.org/10.1016/j.jksus.2018.07.007   [Google Scholar]
  5. Aman S, Khan I, Ismail Z, Salleh MZ, and Al-Mdallal QM (2017). Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids. Scientific Reports, 7: 2445. https://doi.org/10.1038/s41598-017-01358-3   [Google Scholar] PMid:28550289 PMCid:PMC5446429
  6. Cortell R (2006). A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet. International Journal of Non-Linear Mechanics, 41(1): 78-85. https://doi.org/10.1016/j.ijnonlinmec.2005.04.008   [Google Scholar]
  7. Ellahi R, Hayat T, Javed T, and Asghar S (2008). On the analytic solution of nonlinear flow problem involving Oldroyd 8-constant fluid. Mathematical and Computer Modelling, 48(7-8): 1191-1200. https://doi.org/10.1016/j.mcm.2007.12.017   [Google Scholar]
  8. Esmaili Q, Ramiar A, Alizadeh E, and Ganji DD (2008). An approximation of the analytical solution of the Jeffery–Hamel flow by decomposition method. Physics Letters A, 372(19): 3434-3439. https://doi.org/10.1016/j.physleta.2008.02.006   [Google Scholar]
  9. Fetecau C, Prasad SC, and Rajagopal KR (2007). A note on the flow induced by a constantly accelerating plate in an Oldroyd-B fluid. Applied Mathematical Modelling, 31(4): 647-654. https://doi.org/10.1016/j.apm.2005.11.032   [Google Scholar]
  10. Ghadikolaei SS, Hosseinzadeh K, Yassari M, Sadeghi H, and Ganji DD (2018). Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet. Thermal Science and Engineering Progress, 5: 309-316. https://doi.org/10.1016/j.tsep.2017.12.010   [Google Scholar]
  11. Hayat T, Awais M, and Asghar S (2013). Radiative effects in a three-dimensional flow of MHD Eyring-Powell fluid. Journal of the Egyptian Mathematical Society, 21(3): 379-384. https://doi.org/10.1016/j.joems.2013.02.009   [Google Scholar]
  12. Hayat T, Khan M, and Ayub M (2004). Couette and Poiseuille flows of an Oldroyd 6-constant fluid with magnetic field. Journal of Mathematical Analysis and Applications, 298(1): 225-244. https://doi.org/10.1016/j.jmaa.2004.05.011   [Google Scholar]
  13. He JH (1999). Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178(3-4): 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3   [Google Scholar]
  14. Husain M, Hayat T, Fetecau C, and Asghar S (2008). On accelerated flows of an Oldroyd-B fluid in a porous medium. Nonlinear Analysis: Real World Applications, 9(4): 1394-1408. https://doi.org/10.1016/j.nonrwa.2007.03.007   [Google Scholar]
  15. Hussain M, Hayat T, Asghar S, and Fetecau C (2010). Oscillatory flows of second grade fluid in a porous space. Nonlinear Analysis: Real World Applications, 11(4): 2403-2414. https://doi.org/10.1016/j.nonrwa.2009.07.016   [Google Scholar]
  16. Liao S (2004). On the Homotopy analysis method for nonlinear problems. Applied Mathematics and Computation, 147(2): 499-513. https://doi.org/10.1016/S0096-3003(02)00790-7   [Google Scholar]
  17. Liao SJ (1992). The proposed Homotopy analysis technique for the solution of nonlinear problems. Ph.D. Dissertation, Shanghai Jiao Tong University, Shanghai, China.   [Google Scholar]
  18. Makinde OD (2008). Effect of arbitrary magnetic Reynolds number on MHD flows in convergent‐divergent channels. International Journal of Numerical Methods for Heat and Fluid Flow, 18(6): 697-707. https://doi.org/10.1108/09615530810885524   [Google Scholar]
  19. Makinde OD and Mhone PY (2006). Hermite–Padé approximation approach to MHD Jeffery–Hamel flows. Applied Mathematics and Computation, 181(2): 966-972. https://doi.org/10.1016/j.amc.2006.02.018   [Google Scholar]
  20. Makukula Z, Motsa SS, and Sibanda P (2010a). On a new solution for the viscoelastic squeezing flow between two parallel plates. Journal of Advanced Research in Applied Mathematics, 2(4): 31-38. https://doi.org/10.5373/jaram.455.060310   [Google Scholar]
  21. Makukula ZG, Sibanda P, and Motsa SS (2010b). A novel numerical technique for two-dimensional laminar flow between two moving porous walls. Mathematical Problems in Engineering, 2010: 528956. https://doi.org/10.1155/2010/528956   [Google Scholar]
  22. Malik MY, Hussain A, and Nadeem S (2013). Boundary layer flow of an Eyring–Powell model fluid due to a stretching cylinder with variable viscosity. Scientia Iranica, 20(2): 313-321.   [Google Scholar]
  23. Megahed AM (2013). Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity. Chinese Physics B, 22(9): 094701. https://doi.org/10.1088/1674-1056/22/9/094701   [Google Scholar]
  24. Mukhopadhyay S (2012). Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink. Chinese Physics Letters, 29(5): 054703. https://doi.org/10.1088/0256-307X/29/5/054703   [Google Scholar]
  25. Reddy NN, Rao VS, and Reddy BR (2021). Chemical reaction impact on MHD natural convection flow through porous medium past an exponentially stretching sheet in presence of heat source/sink and viscous dissipation. Case Studies in Thermal Engineering, 25: 100879. https://doi.org/10.1016/j.csite.2021.100879   [Google Scholar]
  26. Sadeghy K, Hajibeygi H, and Taghavi SM (2006). Stagnation-point flow of upper-convected Maxwell fluids. International Journal of Non-Linear Mechanics, 41(10): 1242-1247. https://doi.org/10.1016/j.ijnonlinmec.2006.08.005   [Google Scholar]
  27. Salah F, Abdul Aziz Z, and Chuan Ching DL (2011a). New exact solutions for MHD transient rotating flow of a second-grade fluid in a porous medium. Journal of Applied Mathematics, 2011: 823034. https://doi.org/10.1155/2011/823034   [Google Scholar]
  28. Salah F, Alzahrani AK, Sidahmed AO, and Viswanathan KK (2019). A note on thin-film flow of Eyring-Powell fluid on the vertically moving belt using successive linearization method. International Journal of Advanced and Applied Sciences, 6(2): 17-22. https://doi.org/10.21833/ijaas.2019.02.004   [Google Scholar]
  29. Salah F, Zainal AA, and Dennis LCC (2011b). Accelerated flows of a magnetohydrodynamic (MHD) second grade fluid over an oscillating plate in a porous medium and rotating frame. International Journal of Physical Sciences, 6(36): 8027-8035. https://doi.org/10.5897/IJPS11.1356   [Google Scholar]
  30. Saleem M, Al-Mdallal QM, Chaudhry QA, Noreen S, and Haider A (2020). Partial slip effects on the peristaltic motion of an upper-convected Maxwell fluid through an irregular channel. SN Applied Sciences, 2: 976. https://doi.org/10.1007/s42452-020-2457-1   [Google Scholar]
  31. Shafiq A, Çolak AB, and Naz Sindhu T (2021). Designing artificial neural network of nanoparticle diameter and solid–fluid interfacial layer on single‐walled carbon nanotubes/ethylene glycol nanofluid flow on thin slendering needles. International Journal for Numerical Methods in Fluids, 93(12): 3384-3404. https://doi.org/10.1002/fld.5038   [Google Scholar]
  32. Shafiq A, Çolak AB, Sindhu TN, and Muhammad T (2022). Optimization of Darcy-Forchheimer squeezing flow in nonlinear stratified fluid under convective conditions with artificial neural network. Heat Transfer Research, 53(3): 67-89. https://doi.org/10.1615/HeatTransRes.2021041018   [Google Scholar]
  33. Shateyi S and Motsa SS (2010). Variable viscosity on magnetohydrodynamic fluid flow and heat transfer over an unsteady stretching surface with Hall effect. Boundary Value Problems, 2010: 257568. https://doi.org/10.1155/2010/257568   [Google Scholar]
  34. Si X, Li H, Zheng L, Shen Y, and Zhang X (2017). A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate. International Journal of Heat and Mass Transfer, 105: 350-358. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.106   [Google Scholar]
  35. Subhas Abel M, Tawade JV, and Nandeppanavar MM (2012). MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica, 47(2): 385-393. https://doi.org/10.1007/s11012-011-9448-7   [Google Scholar]
  36. Wang F, Ahmad S, Al Mdallal Q, Alammari M, Khan MN, and Rehman A (2022). Natural bio-convective flow of Maxwell nanofluid over an exponentially stretching surface with slip effect and convective boundary condition. Scientific Reports, 12: 2220. https://doi.org/10.1038/s41598-022-04948-y   [Google Scholar] PMid:35140256 PMCid:PMC8828818
  37. Waqas M, Khan MI, Hayat T, and Alsaedi A (2017). Stratified flow of an Oldroyd-B nanoliquid with heat generation. Results in Physics, 7: 2489-2496. https://doi.org/10.1016/j.rinp.2017.06.030   [Google Scholar]
  38. Xu YJ, Bilal M, Al-Mdallal Q, Khan MA, and Muhammad T (2021). Gyrotactic micro-organism flow of Maxwell nanofluid between two parallel plates. Scientific Reports, 11: 15142. https://doi.org/10.1038/s41598-021-94543-4   [Google Scholar] PMid:34312440 PMCid:PMC8313715
  39. Zargartalebi H, Ghalambaz M, Noghrehabadi A, and Chamkha A (2015). Stagnation-point heat transfer of nanofluids toward stretching sheets with variable thermo-physical properties. Advanced Powder Technology, 26(3): 819-829. https://doi.org/10.1016/j.apt.2015.02.008   [Google Scholar]