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In this article, the numerical solutions for the flow of heat transfer for an 
incompressible Maxwell fluid on a stretching sheet channel are presented in 
this study. By applying appropriate transformations, the system of governing 
partial differential equations is transformed into a system of ordinary 
differential equations. A successive linearization method (SLM) is used to 
describe and solve the resulting nonlinear equations numerically using 
MATLAB software. The main goal of this paper is to compare the results of 
solving the velocity and temperature equations in the presence of β1 changes 
through SLM for introducing it as a precise and appropriate method for 
solving nonlinear differential equations. Tables with the numerical results 
are created for comparison. This contrast is important because it shows how 
precisely the successive linearization method can resolve a set of nonlinear 
differential equations. Non-Newtonian parameters on the flow field, like 
mixed convection, Hartman, Deborah, and Prandtl numbers, are explored and 
illustrated graphically. Apart from that, a great deal of agreement has been 
seen between the current results and the published data that have been 
evaluated and compared in a limited way. 
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1. Introduction 

*Engineering and industrial processes like 
extrusion processes, biological fluid flow, hot rolling, 
glass-fiber production, cooling of metallic plates, 
rubber sheets, lubricant and paint performance, wire 
drawing, melt-spinning, plastic manufacturing, the 
extrusion of polymers, and aerodynamic plastic 
sheet extrusion, among others, are required and 
have attracted significant attention in recent decades 
to study flow on a stretching sheet. The movement of 
fluid over a stretched surface is being studied by 
several scholars (Reddy et al., 2021). Nonlinear 
behavior is one of the most common occurrences in 
engineering and research. The equations become 
more complex to handle and solve as a result of the 
nonlinearity. Approximate analytical approaches, 
such as the Homotopy analysis method (HAM) (Liao, 
1992; 2004), can be used to solve some of these 
nonlinear equations. The Homotopy Perturbation 
method (HPM) was found by He (1999) and the 
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Adomain decomposition method (ADM) (Esmaili et 
al., 2008; Makinde and Mhone, 2006; Makinde, 
2008). However, some of these equations are solved 
via traditional numerical techniques such as the 
finite difference method, shooting method and Keller 
box method, Runge-Kutta, and artificial neural 
networks (ANNs) (Shateyi and Motsa, 2010; Shafiq 
et al., 2021). The governing equation for the Maxwell 
fluid is of fourth order in general. When higher-order 
nonlinearities are neglected, the order of the 
equation in the Maxwell fluid is reduced. Recently 
some studies have presented a new method called 
Successive Linearization Method (SLM). This method 
has been applied successfully in many nonlinear 
problems in sciences and engineering, such as the 
MHD flows of non-Newtonian fluids and heat 
transfer over a stretching sheet (Shafiq et al., 2022), 
viscoelastic squeezing flow between two parallel 
plates, (Makukula et al., 2010a), two-dimensional 
laminar flow between two moving porous walls 
(Makukula et al., 2010b) and convective heat 
transfer for MHD boundary layer with pressure 
gradient (Ahmed et al., 2015), the thin-film flow of 
Eyring-Powell fluid on the vertically moving belt 
(Salah et al., 2019). Therefore, the effectiveness, 
validity, accuracy, and flexibility of the SLM are 
verified among all these successful applications. 

Fluid applications have gotten a lot of attention in 
the last several years. Some fluids, unlike viscous 

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:faisal19999@yahoo.com
https://doi.org/10.21833/ijaas.2023.02.020
https://orcid.org/0000-0003-0410-001X
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2023.02.020&amp;domain=pdf&amp


Faisal Salah, A. Alqarni/International Journal of Advanced and Applied Sciences, 10(2) 2023, Pages: 166-174 

167 
 

fluids, have a difficult time expressing themselves 
through a specific constitutive relationship between 
shear rates and stress (Ellahi et al., 2008; Hayat et al., 
2004). These fluids, which include a variety of 
household things such as toiletries, paints, cosmetics, 
some oils, shampoo, jams, soups, and so on, have 
distinct characteristics and are designated as non-
Newtonian fluids. Non-Newtonian fluid models are 
classified into three categories: integral, differential, 
and rate types (Fetecau et al., 2007; Salah et al., 
2011a; 2011b). In the present study, the main 
interest is to discuss the heat transfer flow of 
magnetohydrodynamic (MHD) Maxwell fluid over a 
stretching sheet. The effects of the stretching sheet 
on fluid flow have piqued the interest of a number of 
scientists, resulting in a substantial amount of 
research. Shaping is the most significant industry for 
improving the output and ductility of precise pieces. 
Extrusion casting, drawing, plastic films, polymer, 
hot rolling, and other engineering applications can 
all benefit from the study of MHD fluid flow on 
stretching sheets. Researchers in this discipline are 
constantly trying to enhance accuracy by employing 
various methodologies on fluid behavior in order to 
keep up with breakthroughs in the field. The 
application of magnetohydrodynamic flow was one 
of the techniques used in this sector (Ghadikolaei et 
al., 2018). This application is known as MHD. The 
study of the interaction of electrically conductive 
fluids with electromagnetic events is known as MHD. 
In many areas of applied science, engineering, and 
technology, such as MHD pumps and MHD power 
production, the flow of MHD fluid in the presence of 
a magnetic field is critical. As a result, numerous 
researchers continue to contribute to the field of 
MHD fluid mechanics (Hayat et al., 2013; Malik et al., 
2013; Hussain et al., 2010; Husain et al., 2008). 
Another important application of nanoparticles in 
the base fluid is seeking to improve the behavior of 
fluid and madding optimal use of the changes. Due to 
various engineering issues and different boundary 
conditions, intensive research has been achieved in 
this field, which is summarized briefly. Because of 
various boundary conditions and different 
engineering situations, Waqas et al. (2017) discussed 
the stratified flow of nonliquid with heat generation 

in a linear stretchable surface. Ghadikolaei et al. 
(2018) analyzed the flow and heat transfer of 
second-grade fluid on a stretching sheet channel. The 
study of heat transfer with mixed convection flow of 
nonliquid that passed through a stretching 
perpendicular plate with the presence of three 
various types of nanoparticles, Cu, Al2O3, and TiO2 to 
analyze various thermal conductivity of the 
nonliquid and the velocity of nanoparticles and the 
research on the Nusselt number was found out by Si 
et al. (2017). There are many available published 
works in this field (Zargartalebi et al., 2015; 
Megahed, 2013; Sadeghy et al., 2006; Mukhopadhyay 
2012; Subhas Abel et al., 2012; Cortell, 2006). Wang 
et al. (2022) discussed the Natural bio-convective 
flow of Maxwell Nanofluid over an exponentially 
stretching surface with slip effect and convective 
boundary condition and they conclude that by the 
enhancement of the magnetic characteristic and 
Deborah number, the fluid velocity is declining due 
to occurrence of retardation effect (Wang et al., 
2022). Many attempts have been made for Maxwell 
fluid over an exponentially stretching surface (Aman 
et al., 2017; Aman et al., 2020; Xu et al., 2021; Abdal 
et al., 2022; Saleem et al., 2020; Aman and Almdallal, 
2019). Presently a new investigation on heat transfer 
of an incompressible Maxwell fluid on a stretching 
sheet channel is discussed. The governing equations 
of Maxwell fluid with MHD are utilized. The 
numerical solution to the resulting nonlinear 
problem is computed by using the SLM approach. 
The embedded flow parameters are discussed and 
illustrated graphically. 

2. Description of the mathematical model 

2.1. Flow analysis 

Here we consider two–dimensional steady 
laminar flow of an incompressible MHD Maxwell 
fluid, which is past a flat sheet that coincides with 
the plane 𝑦 = 0. Then the flow is confined to the 
section 𝑦 > 0. Along 𝑥- axis there are two opposite 
and equal forces applied. Due to this, the wall is 
reserved and stretching the origin fixed (Fig. 1).  

 

 
Fig. 1: Geometry of the problem 
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Under the constant and boundary layer 
assumptions, the continuity, constitutive equation of 
Maxwell fluid and energy equation are Subhas Abel 
et al. (2012) and Ghadikolaei et al. (2018): 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                      (1) 

 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝛽 (𝑢2 𝜕2𝑢

𝜕𝑥2
+ 𝑣2 𝜕2𝑢

𝜕𝑦2
+ 2𝑢𝑣

𝜕2𝑢

𝜕𝑥𝜕𝑦
) = 𝜐

𝜕2𝑢

𝜕𝑦2
−

𝜎𝐵0
2

𝜌
(𝑢 + 𝛽𝑣

𝜕𝑢

𝜕𝑦
) + 𝑔𝛽𝑇(𝑇 − 𝑇∞)                                                (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 +
𝑘

𝑐𝑝
(

𝜕𝑢

𝜕𝑦
)

2
                                                    (3) 

 
where, (𝑢, 𝑣) denote the components of velocity in 

(𝑥, 𝑦) directions, 𝜐 (=
𝜇

𝜌
)the kinematic viscosity, 𝜇  is 

the dynamic viscosity, β is the relaxation time, ρ 
density of the fluid, 𝜎 is the electric conductivity, B0 
is the uniform magnetic fluid, g is the gravitational 
acceleration,  𝛽𝑇 the coefficient of thermal expansion, 

𝑇 is the temperature of the fluid, 𝛼 (=
𝑘

𝜌𝑐
)  the 

thermal diffusivity, 𝑘 the fluid thermal conductivity, 
𝜌𝑐 the fluid capacity heat and 𝑐𝑝 the specific heat.  

The relevant boundary conditions are defined by 
Cortell (2006): 

 
𝑢 = 𝑢𝑤 = 𝑐𝑥, 𝑣 = 0  at   𝑦 = 0, 𝑐 > 0                                      (4) 

𝑢 → 0,
𝜕𝑢

𝜕𝑦
→ 0  as  𝑦 → ∞,                                                            (5) 

𝑇 = 𝑇𝑤(= 𝑇∞ + 𝐴𝑥𝑠)  at     𝑦 = 0,    𝑇 → 𝑇∞    as  𝑦 → ∞.  (6) 

 
where, 𝑐 the stretching is rate, 𝑇𝑤 and 𝑇∞are 
constants and 𝑠 is the parameter of wall 
temperature. 

2.2. Transformation  

Introducing the following dimensionless 
variables: 

 

𝑢 = 𝑐𝑥𝑓′(𝜂), 𝑣 = −(𝑐𝜐)
1

2𝑓(𝜂), 𝜂 = (
𝑐

𝜐
)

1

2
𝑦 , 𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝐸𝑐 = (

𝑐2

𝐴𝑐𝑝
).                                                                         (7) 

 
Utilizing Eq. 7, Eq. 1 is satisfied automatically and 

Eqs. 2 and 3 characterize the following problems 
statement: 

 
𝑓‴ + 𝑓𝑓″ − 𝑓′2 + 𝛽1(2𝑓𝑓′𝑓″ − 𝑓2𝑓‴) − 𝑀2𝑓′ + 𝜆𝜃 = 0      (8) 
𝜃″ + Pr𝑓𝜃′ − 𝑠Pr𝑓′𝜃 = −Pr𝐸𝑐(𝑓″)2                                      (9) 

 
Clearly that all solutions for Eq. 9 are in similar 

type when 𝑠 = 2. If we neglected the dissipative heat, 
then Eq. 9 takes the simpler form: 

 
𝜃″ + Pr𝑓𝜃′ − 2Pr𝑓′𝜃 = 0                                                        (10) 

 

Here 𝛽1(= 𝛽𝑐) the Deborah number, 𝑀 (= √
𝜎𝐵0

2

𝑐𝜌
) is 

the Hartman number, 𝜆 (=
𝐺𝑟𝑥

Re𝑥
2) is the mixed 

convection parameter, Pr (=
𝜐

𝛼
) is the Prandtl 

number and 𝐸𝑐 (=
𝑐2

𝐴𝑐𝑝
) is the Eckert number. 

The related boundary conditions: 
 
𝑓 = 0, 𝑓′ = 1    𝑎𝑡   𝜂 = 0,                                                         (11) 
𝑓′ → 0, 𝑓″ → 0   𝑎𝑠  𝜂 → ∞.                                                      (12) 
𝜃(0) = 1,     𝜃(∞) → 0.                                                              (13) 

3. Solution the problem 

3.1. Procedure of computational 

Here successive linearization method (SLM) 
(Makukula et al., 2010a; 2010b; Ahmed et al., 2015; 
Salah et al., 2019) is implemented to obtain the 
numerical solutions for nonlinear systems 8 and 10 
corresponding to the boundary condition Eqs. 11–
13.  

For the SLM solution, we select the initial guess 
functions 𝑓(𝜂) and 𝜃(𝜂) in the form: 
 

𝑓(𝜂) = 𝑓𝑖(𝜂) + ∑ 𝐹𝑚(
𝑖−1

𝑚=0
𝜂), 𝜃(𝜂) = 𝜃𝑖(𝜂) + ∑ 𝜃𝑚(

𝑖−1

𝑚=0
𝜂).    

                                                                                        (14) 
 

Here the two functions 𝑓𝑖(𝜂) and 𝜃𝑖(𝜂) are 
representative of unknown functions. 𝐹𝑚 (𝜂), 𝑚 ≥ 1, 
𝜃𝑚(𝜂), 𝑚 ≥ 1 are successive approximations that are 
obtained by recursively solving the linear part of the 
equation that results from substituting Eq. 14 in Eqs. 
8 and 9.  

The strategy of SLM is the assumption of an 
unknown function 𝑓𝑖(𝜂) and 𝜃𝑖(𝜂) are smaller when i 
becomes very large, therefore, the nonlinear terms in 
𝑓𝑖(𝜂), 𝜃𝑖(𝜂) and their derivatives are considered to 
be smaller and thus neglected. The intimal guess 
functions 𝐹𝜊(𝜂), 𝜃𝜊(𝜂) which are selected to satisfy 
the boundary conditions: 
 
𝐹0(𝜂) = 0, 𝐹′

0(𝜂) = 1  𝑎𝑡   𝜂 = 0, 

𝐹′
0(𝜂) → 0,  𝐹″

0(𝜂) → 0   𝑎𝑡    𝜂 → ∞,  

𝜃𝜊(0) = 1, 𝜃𝜊(∞) →0.                                                                (15) 
 

which are taken to be in the form: 
 
𝐹0(𝜂) = (1 − 𝑒−𝜂)   and   𝜃0(𝜂) = 𝑒−𝜂.                                (16) 
 

Therefore, beginning from the initial guess, the 
subsequent solution 𝐹𝑖  and  𝜃𝑖  are calculated by 
successively solving the linearized from the equation 
which is obtained by substituting Eq. 14 in Eqs. 8 and 
10. Then we get the linearized equations: 
 
𝑎1,𝑖−1𝐹𝑖′′′ + 𝑎2,𝑖−1𝐹𝑖′′ + 𝑎3,𝑖−1𝐹𝑖′ + 𝑎4,𝑖−1𝐹𝑖 + 𝜆𝜃𝑖 = 𝑟1,𝑖−1 

                                                                                                         (17) 
𝑏1,𝑖−1𝐹𝑖′ + 𝑏2,𝑖−1𝐹𝑖 + 𝜃𝑖′′ + 𝑏3,𝑖−1𝜃𝑖′ + 𝑏4,𝑖−1𝜃𝑖 = 𝑟2,𝑖−1  (18) 

 

Subject to the boundary conditions: 
 
𝐹𝑖(0) = 𝜃𝑖(∞) = 0, 𝐹′

𝑖(0) = 𝜃𝑖(0) = 1                               (19) 

 
where, the coefficients parameters 𝑎𝑘,𝑖−1, 𝑏𝑘,𝑖−1(𝑘 =

1,2,3,4) and 𝑟𝑗,𝑖−1, 𝑗 = 1,2 are defined as: 
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𝑎1,𝑖−1 = 1 − 𝛽1(∑ 𝐹𝑚
𝑖−1
𝑚=0 )

2
,𝑎2,𝑖−1 = ∑ 𝐹𝑚

𝑖−1
𝑚=0 + 2𝛽1 ∑ 𝐹𝑚

𝑖−1
𝑚=0 ∑ 𝐹′

𝑚
𝑖−1
𝑚=0 ,  

𝑎3,𝑖−1 = −2 ∑ 𝐹′
𝑚 −𝑖−1

𝑚=0 𝑀2 + 2𝛽1 ∑ 𝐹𝑚
𝑖−1
𝑚=0 ∑ 𝐹″

𝑚
𝑖−1
𝑚=0  ,  

𝑎4,𝑖−1 = ∑ 𝐹″
𝑚

𝑖−1
𝑚=0 + 2𝛽1 ∑ 𝐹𝑚

𝑖−1
𝑚=0 ∑ 𝐹″

𝑚
𝑖−1
𝑚=0 − 2𝛽1 ∑ 𝐹𝑚

𝑖−1
𝑚=0 ∑ 𝐹𝑚′′′𝑖−1

𝑚=0 ,  
 
and 
 

𝑟1,𝑖−1 = − ∑ 𝐹𝑚
′′′𝑖−1

𝑚=0 − ∑ 𝐹𝑚
𝑖−1
𝑚=0 ∑ 𝐹″

𝑚
𝑖−1
𝑚=0 + (∑ 𝐹′

𝑚
𝑖−1
𝑚=0 )

2
− 𝛽1 [2 ∑ 𝐹𝑚

𝑖−1
𝑚=0 ∑ 𝐹′

𝑚
𝑖−1
𝑚=0 ∑ 𝐹″

𝑚
𝑖−1
𝑚=0 − (∑ 𝐹𝑚

𝑖−1
𝑚=0 )

2
∑ 𝐹𝑚′′′𝑖−1

𝑚=0 ]  

+𝑀2 ∑ 𝐹′
𝑚

𝑖−1
𝑚=0 − 𝜆 ∑ 𝜃𝑚

𝑖−1
𝑚=0                                                    (20) 

𝑏1,𝑖−1 = −2Pr ∑ 𝜃𝑚
𝑖−1
𝑚=0  , 𝑏2,𝑖−1 = Pr ∑ 𝜃′

𝑚
𝑖−1
𝑚=0 , 𝑏3,𝑖−1 = Pr ∑ 𝐹𝑚

𝑖−1
𝑚=0 , 𝑏4,𝑖−1 = −2Pr ∑ 𝐹′

𝑚
𝑖−1
𝑚=0  

𝑟2,𝑖−1 = − ∑ 𝜃″
𝑚

𝑖−1
𝑚=0 − Pr ∑ 𝐹𝑚

𝑖−1
𝑚=0 ∑ 𝜃′

𝑚
𝑖−1
𝑚=0 + Pr ∑ 𝐹′

𝑚
𝑖−1
𝑚=0 ∑ 𝜃𝑚

𝑖−1
𝑚=0 .                                              (21) 

  

 

When we solve Eqs. 8 and 10 iteratively, the 
solution for 𝐹𝑖   and   𝜃𝑖  has been obtained and finally 
after 𝐾 iterations the solution 𝑓(𝜂) and 𝜃(𝜂) can be 
written as 𝑓(𝜂) ≈ ∑ 𝐹𝑚(𝜂)𝐾

𝑚=0 , 𝜃(𝜂) ≈ ∑ 𝜃𝑚(𝜂)𝐾
𝑚=0 . 

In order to apply SLM, initially we transform the 
domain solution from [0, ∞) to [−1,1]. SLM is 
dependent on the Chebyshev spectral collection 
method.  

This method is depending on the Chebyshev 
polynomials defined on the interval [−1,1]. Thus, by 
using the truncation of domain approach where the 
problem is solved in the interval [0, 𝐿] where 𝐿 
denotes the scaling parameter which is used to 
impose the boundary condition at infinity. Thus, this 
can be obtained via the transformation: 
 
𝜂

𝐿
=

𝜉+1

2
, −1 ≤ 𝜉 ≤ 1.                                                                 (22) 

 

By using the Gauss-Lobatto collocation points we 
can discretize the domain [−1,1] as follows: 
 

𝜉 = cos
𝜋𝑗

𝑁
, 𝐹𝑖 ≈ ∑ 𝐹𝑖

𝑁
𝑘=0 (𝜉𝑘)𝑇(𝜉𝑗), 𝑗 = 0,1, . . . 𝑁               (23) 

 

where, 𝑁 is the number of collection points and 𝑇𝑘  is 
the 𝑘𝑡ℎ Chebyshev polynomial is given by 𝑇𝑘(𝜉) =
cos[𝑘cos−1(𝜉)]. 

The derivatives of the variable at the collocation 
points are in the form: 
 

𝑑𝑟𝐹𝑖

𝑑𝜂𝑟 = ∑ 𝐷𝑘𝑗
𝑟

𝑁

𝑘=0
𝐹𝑖(𝜉𝑘), 𝑗 = 0,1, . . . 𝑁   

𝑑𝑟𝜃𝑖

𝑑𝜂𝑟 = ∑ 𝐷𝑘𝑗
𝑟

𝑁

𝑘=0
𝜃𝑖(𝜉𝑘), 𝑗 = 0,1, . . . 𝑁                 (24) 

 

where 𝑟 is denote the order of differentiation and 

𝑫 =
2

𝐿
𝑫 with D is the Chebyshev spectral 

differentiation matrix. Substituting Eqs. 22 to 24 into 
Eqs. 17 and 18 we arrive at the matrix equation: 
 
𝑨𝒊−𝟏𝑿𝒊 = 𝑹𝒊−𝟏                                                                             (25) 

𝑨𝒊−𝟏 = [
𝑨𝟏𝟏 𝑨𝟏𝟐

𝑨𝟐𝟏 𝑨𝟐𝟐
],  𝒙𝒊−𝟏 = [

𝑭𝒊

𝜽𝒊
],    𝑹𝒊−𝟏 = [

𝒓𝟏,𝒊−𝟏

𝒓𝟐,𝒊−𝟏
] 

where, 
 
𝑨𝟏𝟏 = 𝒂𝟏,𝒊−𝟏𝑫𝟑 + 𝒂𝟐,𝒊−𝟏𝑫𝟐 + 𝒂𝟑,𝒊−𝟏𝑫 + 𝒂𝟒,𝒊−𝟏𝑰,  
𝑨𝟏𝟐 = 𝝀𝑰,    
𝑨𝟐𝟏 = 𝒃𝟏,𝒊−𝟏𝑫 + 𝒃𝟐,𝒊−𝟏𝑰, 

𝑨𝟐𝟐 = 𝑫𝟐 + 𝒃𝟑,𝒊−𝟏𝑫 + 𝒃𝟒,𝒊−𝟏𝑰. 

 
Following the above procedure, we can obtain the 

solution: 

 
𝑿𝒊 = 𝑨−𝟏𝑹𝒊−𝟏.                                                                              (26) 

3.2. Convergence analysis 

Table 1 illustrates the convergence for the 
numerical values of the skin friction coefficient and 
the local Nusselt number. 

 
Table 1: The convergence for numerical values of −𝑓″(0) 
for different order of approximation when 𝑀 = 0.50, 𝛽1 =

0.26, Pr = 0.48  and   𝜆 = 0.43 

3.3. Numerical scheme testing 

Here, we test the validity of our numerical results 
and contrast them with those of published works as 
limiting examples. Thus, we compare the present 
results with the available results such as Waqas et al. 
(2017), Megahed (2013), Mukhopadhyay (2012), 
and Subhas Abel et al. (2012); it is found that our 
results are excellent agreement as shown in Table 2. 

 
Table 2: Comparison of numerical values of −𝑓″(0) with other works for several values of 𝛽1 when 𝑀 = 0 = 𝜆 = Pr 

 

Order of approximation −𝑓″(0) −𝜃′(0) 
1 0.9776756524 0.8369450287 
5 0.9612200665 0.8481192201 

10 0.9529250443 0.8518377291 
20 0.9476560827 0.8532002153 
30 0.9472383897 0.8532702100 
50 0.9472212121 0.8532722292 
70 0.9472212200 0.8532722263 
75 0.9472212201 0.8532722263 
80 0.9472212201 0.8532722263 
90 0.9472212201 0.8532722263 

100 0.9472212201 0.8532722263 

𝛽1 Waqas et al. (2017) Megahed (2013) Mukhopadhyay (2012) Subhas Abel et al. (2012) Present work 

0.0 1.000000 0.999978 0.9999963 1.00000 0.999999 
0.2 1.051889 1.051945 1.051949 1.05194 1.051889 
0.4 1.101903 1.101848 1.101851 1.10184 1.101903 
0.6 1.150137 1.150163 1.150162 1.15016 1.150137 
0.8 1.196711 1.196690 1.196693 1.19872 1.196711 
1.0 - - - - 1.241747 
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4. Results and discussion  

The successive linearization method was used to 
construct the graphical representations of velocity 
and temperature profiles in this section. These 
graphs illustrate the variations in embedded flow 
parameters for incompressible MHD Maxwell fluid 
flows over a stretching sheet channel. The physical 
understanding of the issue is examined in Figs. 2–9. 

These data points are shown to show these 
changes. Here the graphs have been determined for 
the MHD heat transfer flow of steady Maxwell fluid 
over a stretching sheet. Fig. 2 is prepared to show 
the role of Hartman number 𝑀 on the velocity field 
profile. By fixing 𝛽1, Pr, 𝜆 and varying 𝑀, it is notice 
that the velocity profile decreases when the 
magnetic field parameter 𝑀 become very large. 
Physically this is due to the effects of the transverse 
magnetic field on the conducting electrical fluid, 
which gives rise to a resistive type of Lorentz force 

that tends to slow down the fluid motion. Fig. 3 
shows that a strong imposed magnetic force leads to 
a larger temperature. This is due to the fact that for 
strong magnetic force, the Lorenz force becomes 
dominant, and then the temperature of the liquid 
increases. Fig. 4 shows the effects of the mixed 
convection parameter 𝜆 on the velocity profile when 
𝑀, 𝛽1, 𝑎𝑛𝑑 𝑃𝑟 are fixed. It is worth noticing that by 
increasing the parameter 𝜆 reveals that buoyancy 
because of augments of gravity which boosts on the 
velocity 𝑓′(𝜂). Besides that, the thickness of 
boundary layer for large 𝜆 is also getting higher. In 
Fig. 5 we show that for larger 𝜆, this would lead to 
increase in the temperature profile (this is much 
related to decrease in the boundary layer thickness). 
Fig. 6 is sketched for the variation of Prandtl number 
𝑃𝑟 on 𝜃(𝜂). It is noted that for lager Pr, the thermal 
field is lower and then this reduce the temperature. 

 

 
Fig. 2: Effects of Hartman number 𝑀 for velocity𝑓′(𝜂) 

 

 
Fig. 3: Effects of Hartman number 𝑀 for temperature 𝜃(𝜂) 
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Fig. 4: Effects of mixed convection parameter 𝜆 for velocity 𝑓′(𝜂) 

 

 
Fig. 5: Effects of mixed convection parameter 𝜆 for temperature 𝜃(𝜂) 

 

 
Fig. 6: Effects of Prandtl number 𝑃𝑟 for temperature 𝜃(𝜂) 
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Fig. 7: Effects of Prandtl number 𝑃𝑟 for velocity 𝑓′(𝜂) 

 

 
Fig. 8: Effects of Deborah number 𝛽1 for velocity 𝑓′(𝜂) 

 

 
Fig. 9: Effects of Deborah number 𝛽1  for temperature 𝜃(𝜂) 
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In fact law Prandtl number 𝑃𝑟 assist fluid with 
higher thermal conductivity and this create thicker 
thermal boundary layer than that for lager Pr. It is 
notice that from Fig. 7 Prandtl number 𝑃𝑟 has same 
effect on 𝑓′(𝜂) same as temperature. The influence of 
Deborah number 𝛽1 on the velocity distribution 
𝑓′(𝜂) is shown through Fig. 8 and Fig. 9. In fact 𝛽1 
originally comes due to the relaxation time 
phenomena. There for large 𝛽1 leads to longer 
relaxation time which opposes the fluid flow and 
then the thickness of momentum layer is reduced. 
Finally, Fig. 9 shows the effect of 𝛽1 on temperature 
profile over the sheet, and we note that by increasing 
in 𝛽1 parameter is seen to decrease and reducing in 
the liquid temperature 𝜃(𝜂). Physically, that is, for 
larger parameter 𝛽1, the thermal boundary layer 
becomes thicker. 

5. Conclusions 

In this paper, the numerical solution to the MHD 
heat transfer problem of an incompressible Maxwell 
fluid over a stretched sheet channel has been 
obtained. SLM is knowledgeable in numerical 
solutions. The effects of various parameters are 
shown in several graphs. The validity of the current 
results was tested, and they were contrasted with 
those that had previously been published (Waqas et 
al., 2017; Megahed, 2013; Mukhopadhyay, 2012; 
Subhas Abel et al., 2012). Table 2 shows a limited 
example where there is strong agreement. 
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