International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 12 (December 2023), Pages: 132-141

----------------------------------------------

 Original Research Paper

Influence of graphene nano-strips on the vibration of thermoelastic nanobeams

 Author(s): 

 Mohammad Salem J. Alzahrani 1, Najat A. Alghamdi 2, *, Jamiel A. Alotaibi 2, 3

 Affiliation(s):

 1Electronic and Communications Department, College of Engineering– Al-Leith, Umm Al-Qura University, Makkah, Saudi Arabia
 2Mathematics Department, College of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
 3Mathematics Department, College of Applied Science, Taif University, Taif, Saudi Arabia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-5796-3217

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2023.12.015

 Abstract

This research deals with the investigation of the vibrational behavior of thermoelastic homogeneous isotropic nanobeams, with particular emphasis on the application of non-Fourier heat conduction theory. The nanobeam is configured with one end having a graphene nano-strip connected to an electrical source supplying a low voltage current. To analyze this system, the Green-Naghdi type I and type III theorems are applied within the framework of simply supported boundary conditions while maintaining a fixed aspect ratio. The nanobeam is subjected to thermal loading due to the heat generated by the current flow through the graphene nano-strip. The governing equations are solved in the Laplace transform domain, and the inverse Laplace transform is computed numerically using Tzou's approximation method. Our results, as shown in the figures, reveal different scenarios characterized by varying electric voltage and electric resistance values for the nanographene strips. It is evident that these parameters exert a profound influence on the functional behavior of the nanobeam, thus providing a mechanism to regulate both its vibrational characteristics and temperature rise through judicious manipulation of the electrical voltage and resistance levels.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Thermo-electrical effect, Graphene nano-strip, Thermoelasticity, Vibration, Green-Naghdi model

 Article history

 Received 1 June 2023, Received in revised form 24 September 2023, Accepted 28 November 2023

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Alzahrani MSJ, Alghamdi NA, and Alotaibi JA (2023). Influence of graphene nano-strips on the vibration of thermoelastic nanobeams. International Journal of Advanced and Applied Sciences, 10(12): 132-141

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 

 Tables

 No Table

----------------------------------------------   

 References (38)

  1. Abouelregal AE (2022). An advanced model of thermoelasticity with higher-order memory-dependent derivatives and dual time-delay factors. Waves in Random and Complex Media, 32(6): 2918-2939. https://doi.org/10.1080/17455030.2020.1871110   [Google Scholar]
  2. Alghamdi NA (2016). Two-temperature thermoelastic damping in rectangular microplate resonators. Journal of Computational and Theoretical Nanoscience, 13(11): 8375-8382. https://doi.org/10.1166/jctn.2016.5984   [Google Scholar]
  3. Alghamdi NA (2020a). The vibration of a viscothermoelastic nanobeam of silicon nitride based on dual-phase-lage heat conduction model and subjected to ramp-type heating. AIP Advances, 10(10): 105112. https://doi.org/10.1063/5.0026255   [Google Scholar]
  4. Alghamdi NA (2020b). The vibration of nano-beam subjected to thermal shock and moving heat source with constant speed. Journal of Nano Research, 61: 136-150. https://doi.org/10.4028/www.scientific.net/JNanoR.61.136   [Google Scholar]
  5. Alghamdi NA and Youssef HM (2017). Dual-phase-lagging thermoelastic damping in-extensional vibration of rotating nano-ring. Microsystem Technologies, 23: 4333-4343. https://doi.org/10.1007/s00542-017-3294-z   [Google Scholar]
  6. Al-Huniti NS, Al-Nimr MA, and Naji M (2001). Dynamic response of a rod due to a moving heat source under the hyperbolic heat conduction model. Journal of Sound and Vibration, 242(4): 629-640. https://doi.org/10.1006/jsvi.2000.3383   [Google Scholar]
  7. Al-Lehaibi EA and Youssef HM (2015). Vibration of gold nano-beam with variable young’s modulus due to thermal shock. World Journal of Nano Science and Engineering, 5(04): 194. https://doi.org/10.4236/wjnse.2015.54020   [Google Scholar]
  8. Alzahrani MSJ and Alghamdi NA (2023). The vibration of a nanobeam subjected to constant magnetic field and ramp-type heat under non-Fourier heat conduction law based on the Lord-Shulman model. Advances in Mechanical Engineering, 15(5). https://doi.org/10.1177/16878132231177985   [Google Scholar]
  9. Biot M (1955). Variational principles in irreversible thermodynamics with application to viscoelasticity. Physical Review, 97(6): 1463. https://doi.org/10.1103/PhysRev.97.1463   [Google Scholar]
  10. Biot MA (1956). Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 27(3): 240-253. https://doi.org/10.1063/1.1722351   [Google Scholar]
  11. Boley BA (1972). Approximate analyses of thermally induced vibrations of beams and plates. Journal of Applied Mechanics, 39(1): 212-216. https://doi.org/10.1115/1.3422615   [Google Scholar]
  12. Dhaliwal RS and Sherief HH (1980). Generalized thermoelasticity for anisotropic media. Quarterly of Applied Mathematics, 38(1): 1-8. https://doi.org/10.1090/qam/575828   [Google Scholar]
  13. Elsibai KA and Youssef HM (2011). State-space approach to vibration of gold nano-beam induced by ramp type heating without energy dissipation in femtoseconds scale. Journal of Thermal Stresses, 34(3): 244-263. https://doi.org/10.1080/01495739.2010.545737   [Google Scholar]
  14. Green AE and Naghdi P (1993). Thermoelasticity without energy dissipation. Journal of Elasticity, 31(3): 189-208. https://doi.org/10.1007/BF00044969   [Google Scholar]
  15. Grover D (2012). Viscothermoelastic vibrations in micro-scale beam resonators with linearly varying thickness. Canadian Journal of Physics, 90(5): 487-496. https://doi.org/10.1139/p2012-044   [Google Scholar]
  16. Grover D (2013). Transverse vibrations in micro-scale viscothermoelastic beam resonators. Archive of Applied Mechanics, 83: 303-314. https://doi.org/10.1007/s00419-012-0656-y   [Google Scholar]
  17. Grover D (2015). Damping in thin circular viscothermoelastic plate resonators. Canadian Journal of Physics, 93(12): 1597-1605. https://doi.org/10.1139/cjp-2014-0575   [Google Scholar]
  18. Grover D and Seth RK (2018). Viscothermoelastic micro-scale beam resonators based on dual-phase lagging model. Microsystem Technologies, 24: 1667-1672. https://doi.org/10.1007/s00542-017-3515-5   [Google Scholar]
  19. Grover D and Seth RK (2019). Generalized viscothermoelasticity theory of dual-phase lagging model for damping analysis in circular micro-plate resonators. Mechanics of Time-Dependent Materials, 23: 119-132. https://doi.org/10.1007/s11043-018-9388-x   [Google Scholar]
  20. Hoang CM (2015). Thermoelastic damping depending on vibration modes of nano beam resonator. Communications Physics, 25(4): 317-325. https://doi.org/10.15625/0868-3166/25/4/6887   [Google Scholar]
  21. Honig G and Hirdes U (1984). A method for the numerical inversion of Laplace transforms. Journal of Computational and Applied Mathematics, 10(1): 113-132. https://doi.org/10.1016/0377-0427(84)90075-X   [Google Scholar]
  22. Kidawa-Kukla J (2003). Application of the Green functions to the problem of the thermally induced vibration of a beam. Journal of Sound and Vibration, 262(4): 865-876. https://doi.org/10.1016/S0022-460X(02)01133-1   [Google Scholar]
  23. Lee YM and Tsai TW (2007). Ultra-fast pulse-laser heating on a two-layered semi-infinite material with interfacial contact conductance. International Communications in Heat and Mass Transfer, 34(1): 45-51. https://doi.org/10.1016/j.icheatmasstransfer.2006.08.017   [Google Scholar]
  24. Lifshitz R and Roukes ML (2000). Thermoelastic damping in micro-and nanomechanical systems. Physical Review B, 61(8): 5600. https://doi.org/10.1103/PhysRevB.61.5600   [Google Scholar]
  25. Lord HW and Shulman Y (1967). A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15(5): 299-309. https://doi.org/10.1016/0022-5096(67)90024-5   [Google Scholar]
  26. Manolis GD and Beskos D (1980). Thermally induced vibrations of beam structures. Computer Methods in Applied Mechanics and Engineering, 21(3): 337-355. https://doi.org/10.1016/0045-7825(80)90101-2   [Google Scholar]
  27. Naik AK, Hanay MS, Hiebert WK, Feng XL, and Roukes ML (2009). Towards single-molecule nanomechanical mass spectrometry. Nature Nanotechnology, 4(7): 445-450. https://doi.org/10.1038/nnano.2009.152   [Google Scholar] PMid:19581898 PMCid:PMC3846395
  28. Nirmalraj PN, Lutz T, Kumar S, Duesberg GS, and Boland JJ (2011). Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Letters, 11(1): 16-22. https://doi.org/10.1021/nl101469d   [Google Scholar] PMid:21128677
  29. O’Connell AD, Hofheinz M, Ansmann M, Bialczak RC, Lenander M, Lucero E, and Cleland AN (2010). Quantum ground state and single-phonon control of a mechanical resonator. Nature, 464(7289): 697-703. https://doi.org/10.1038/nature08967   [Google Scholar] PMid:20237473
  30. Saanouni K, Mariage JF, Cherouat A, and Lestriez P (2004). Numerical prediction of discontinuous central bursting in axisymmetric forward extrusion by continuum damage mechanics. Computers and Structures, 82(27): 2309-2332. https://doi.org/10.1016/j.compstruc.2004.05.018   [Google Scholar]
  31. Sharma JN, and Grover D (2011). Thermoelastic vibrations in micro-/nano-scale beam resonators with voids. Journal of Sound and Vibration, 330(12): 2964-2977. https://doi.org/10.1016/j.jsv.2011.01.012   [Google Scholar]
  32. Sun Y and Saka M (2010). Thermoelastic damping in micro-scale circular plate resonators. Journal of Sound and Vibration, 329(3): 328-337. https://doi.org/10.1016/j.jsv.2009.09.014   [Google Scholar]
  33. Tzou DY (1989). On the thermal shock wave induced by a moving heat source. Journal of Heat Transfer, 111(2): 232-238. https://doi.org/10.1115/1.3250667   [Google Scholar]
  34. Van Beek JTM and Puers R (2011). A review of MEMS oscillators for frequency reference and timing applications. Journal of Micromechanics and Microengineering, 22(1): 013001. https://doi.org/10.1088/0960-1317/22/1/013001   [Google Scholar]
  35. Youssef HM and Al Thobaiti AA (2022). The vibration of a thermoelastic nanobeam due to thermo-electrical effect of graphene nano-strip under Green-Naghdi type-II model. Journal of Engineering and Thermal Sciences, 2(1): 1-12. https://doi.org/10.21595/jets.2022.22568   [Google Scholar]
  36. Youssef HM and Alghamdi NA (2015). Thermoelastic damping in nanomechanical resonators based on two-temperature generalized thermoelasticity theory. Journal of Thermal Stresses, 38(12): 1345-1359. https://doi.org/10.1080/01495739.2015.1073541   [Google Scholar]
  37. Youssef HM and Salem RA (2022). The dual-phase-lag bioheat transfer of a skin tissue subjected to thermo-electrical shock. Journal of Engineering and Thermal Sciences, 2(2): 114-123. https://doi.org/10.21595/jets.2022.22945   [Google Scholar]
  38. Zakaria K, Sirwah MA, Abouelregal AE, and Rashid AF (2022). Photothermoelastic survey with memory-dependent response for a rotating solid cylinder under varying heat flux via dual phase lag model. Pramana, 96(4): 219. https://doi.org/10.1007/s12043-022-02452-6   [Google Scholar]