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This research deals with the investigation of the vibrational behavior of 
thermoelastic homogeneous isotropic nanobeams, with particular emphasis 
on the application of non-Fourier heat conduction theory. The nanobeam is 
configured with one end having a graphene nano-strip connected to an 
electrical source supplying a low voltage current. To analyze this system, the 
Green-Naghdi type I and type III theorems are applied within the framework 
of simply supported boundary conditions while maintaining a fixed aspect 
ratio. The nanobeam is subjected to thermal loading due to the heat 
generated by the current flow through the graphene nano-strip. The 
governing equations are solved in the Laplace transform domain, and the 
inverse Laplace transform is computed numerically using Tzou's 
approximation method. Our results, as shown in the figures, reveal different 
scenarios characterized by varying electric voltage and electric resistance 
values for the nanographene strips. It is evident that these parameters exert 
a profound influence on the functional behavior of the nanobeam, thus 
providing a mechanism to regulate both its vibrational characteristics and 
temperature rise through judicious manipulation of the electrical voltage and 
resistance levels. 
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1. Introduction 

*The theory of coupled thermoelasticity is a type 
of heat conduction and has been proven to serve 
several problems (Tzou, 1989). This theory consists 
of two partial differential equations, the equation of 
motion and the law of conservation of energy, based 
on Fourier's law of heat conduction (Alghamdi, 
2016; Alghamdi, 2020a; 2020b; Alghamdi and 
Youssef, 2017; Biot, 1956; Youssef and Alghamdi, 
2015). This type of heat conduction increases the 
propagation velocity of heat waves infinitely. Lord 
and Shulman (Lord and Shulman, 1967) proposed a 
generalized theory of thermoelasticity with 
relaxation time for isotropic objects. In this theory, 
the heat conduction law is modified so that the 
inclusion of both heat flow and its time derivative 
(Cattaneo's law or non-Fourier's law of heat 
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conduction) replaces Fourier's law. Since the heat 
equation of this theory is a hyperbola, it removes the 
paradox of infinite propagation velocity (Dhaliwal 
and Sherief, 1980). 

In recent years, many scientists have dealt with 
micro/nano electric machines. There are many 
applications based on micro/nanoelectromechanical 
beam resonators, such as actuators, beams, sensors, 
pumps, resonators, and motors, and even very 
important for physical applications (Hoang, 2015; 
Naik et al., 2009; O’Connell et al., 2010; Van Beek and 
Puers, 2011).  

It is important to study thermoelastic vibration 
micro/nanobeam resonators. Alghamdi (2016) 
studied thermoelastic damping in rectangular 
microplate resonators using the generalization 
theory of thermoelasticity with the two-temperature 
theory. Sharma and Grover (2011) studied the 
lateral oscillations of thin, homogeneous, isotropic, 
thermoelastic micro/nanoscale thin beam cavity 
resonators. Sun and Saka (2010) studied the 
vibration damping of thermoelastic disk resonators 
off the plane of the microplate. They introduced a 
coefficient in their thermoelastic damping formula 
K=((1+υ)) ⁄((1-2υ)), which is different from that of 
Lifshitz and Roukes (2000), in which υ is Poisson's 
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ratio. Many researchers have investigated nanobeam 
vibration and processes of heat transfer (Al-Huniti et 
al., 2001; Al-Lehaibi and Youssef, 2015; Boley, 1972; 
Kidawa-Kukla, 2003; Manolis and Beskos, 1980). Al-
Lehaibi and Yossief (2015) studied the thermoelastic 
vibration of gold nanobeams subjected to thermal 
shock. Kidawa-Kukla (2003) used the properties of 
Green's function to study the internal and external 
damping effects on the lateral oscillations of the 
beam induced by the mobile heat source. Boley 
(1972) studied the effect of thermal shock on the 
vibration of a rectangular simply supported 
nanobeam. Manolis and Bescos (1980) used the 
numerical method to discuss the thermoelastic 
dynamic response of the nanobeam subjected to 
thermal loads. Al-Huniti et al. (2001) studied the 
displacements and stresses of a rod heated by a 
moving laser beam and the dynamic behavior using 
the Laplace transform method. Alghamdi (2020b) 
studied the thermoelastic vibration of 
micro/nanobeam subjected to a moving heat source. 
Youssef and Al Thobaiti (2022) studied the vibration 
of a thermoelastic nanobeam due to the thermo-
electrical effect of graphene nano-strip under the 
Green-Naghdi type-II model. Alzahrani and Alghamdi 
(2023) studied the vibration of a nanobeam 
subjected to the constant magnetic field and ramp-
type heat under non-Fourier heat conduction law 
based on the Lord-Shulman model. 

This study uses Green-Naghdi theory type-I and 
III heat conduction law for the first time to analyze 
thermoelastic, homogeneous, isotropic nanobeams 

in the context of the non-Fourier law of heat 
conduction, where the first end of the nanobeam is 
based on a graphene strip connected to electricity 
current. A low voltage was applied to a graphene 
strip, and as a result of this current, Nanobeams 
were thermally loaded with heat from the graphene 
strip due to the thermal effect of electrical current. 
An electrical isolator with high thermal conductivity 
was used to electrically isolate the nanobeam, as 
shown in Fig. 1. This work is a novel application of 
an electrical field to a thermoelastic nanobeam 
under Green-Naghdi theory type-I and III, which has 
not been executed before, and therefore the results 
will be new. 

2. Problem formulation 

2.1. Model description 

We consider the flexural deflections to be very 
small for thermoelastic thin nanobeam of 

thickness ℎ (−
ℎ

2
≤ 𝑧 ≤

ℎ

2
) , width 𝑏 (−

𝑏

2
≤ 𝑦 ≤

𝑏

2
) , 

and length ℓ(0 ≤ 𝑥 ≤ ℓ).  
As in Fig. 1, the x, y, and z-axes are defined 

through the longitudinal ℓ, width 𝑏, and thickness 
ℎ directions of the beam. 

In an equilibrium state, the nanobeam has no 
damping, unstressed, unstrained, and the reference 
temperature is 𝑇0 everywhere (Lee and Tsai, 2007). 

 

 

 
Fig. 1: Thermoelastic rectangular nanobeam 

 
Euler-Bernoulli equation states that any plane 

cross-section perpendicular to the beam's axis 
(neutral surface) will remain so during beam 
bending (Grover, 2012). 

Then, the displacement components will take the 
forms (Grover, 2012; 2013; 2015; Grover and Seth, 
2018; 2019; Saanouni et al., 2004): 

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = −𝑧
∂𝑤(𝑥,𝑡)

∂𝑥
,  𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 0, 𝑤(𝑥, 𝑦, 𝑧, 𝑡) =

𝑤(𝑥, 𝑡)                                                             (1) 

 

The flexural moment of the cross-section and 
equation of motion are given (Grover, 2012; Grover 
and Seth, 2018; 2019; Saanouni et al., 2004): 

 

M(x, t) = (λ + 2μ)I
∂2w(x,t)

∂x2 + βMT(x, t)                                  (2) 

 
where, the equation of motion is in the form: 

 

 
∂2𝑀(𝑥,𝑡)

∂𝑥2 + 𝜌𝐴
∂2𝑤(𝑥,𝑡)

∂𝑡2 = 0                                                          (3) 
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The thermal moment 𝑀𝑇 of the nanobeam about 
the x-axis is given (Grover, 2012; Grover and Seth, 
2018; 2019; Saanouni et al., 2004):  

 

𝑀𝑇(𝑥, 𝑡) = 𝑏∫−ℎ/2

ℎ/2
 𝑇(𝑥, 𝑧, 𝑡)𝑧𝑑𝑧                                                (4) 

 

where, 𝐼 =
𝑏ℎ3

12
 gives the moment of inertia of the 

cross-section around the x-axis and 𝛽 = (3𝜆 +
2𝜇)𝛼𝑇 . Thus, the equation of motion, which gives 
thermally induced lateral vibrations of the 
nanobeam, takes the form (Grover and Seth, 2018): 

 

(𝜆 + 2𝜇)𝐼
∂4𝑤(𝑥,𝑡)

∂𝑥4
+ 𝜌𝐴

∂2𝑤(𝑥,𝑡)

∂𝑡2
+ 𝛽

∂2𝑀𝑇(𝑥,𝑡)

∂𝑥2
= 0                 (5) 

 
where, 𝐴 = ℎ𝑏 is the cross-section area. The heat 
conduction equations which have been proposed by 
Green-Naghdi take the following form (Green and 
Naghdi, 1993): 

 

(
𝜕

𝜕𝑡
+

𝐾2

𝐾1
) 𝛻2𝜃(𝑥, 𝑦, 𝑧, 𝑡) =

𝜕2

𝜕𝑡2 (
𝜌𝐶𝑣

𝐾1
𝜃(𝑥, 𝑦, 𝑧, 𝑡) +

𝛽𝑇0

𝐾1
𝑒(𝑥, 𝑦, 𝑧, 𝑡)) −

1

𝐾1
𝑄(𝑥, 𝑦, 𝑧, 𝑡).                                              (6) 

 
The unified Eq. 6 could be used for the two types 

of Green-Naghdi theories as follows: 
 
(a) The setting 𝐾1 = 𝐾,𝐾2 = 0  represents the Green- 

Naghdi type-I model. 
(b) The setting 𝐾1 = 𝐾,𝐾2 = 𝐾∗ represents the 

Green-Naghdi type-III model.  

where, 𝐾∗ =
(𝜆+2𝜇)𝐶𝑣

4
 is the characteristic of Green-

Naghdi theory, 𝐾 is the usual thermal conductivity, 
and Q is the heat source. The volumetric strain has 
the form:  

 

𝑒(𝑥, 𝑧, 𝑡) =
∂𝑢(𝑥,𝑧,𝑡)

∂𝑥
+

∂𝑣(𝑥,𝑧,𝑡)

∂𝑦
+

∂𝑤(𝑥,𝑧,𝑡)

∂𝑧
                                 (7) 

 
thus, from Eqs. 1 and 7, we have: 

 

e(x, z, t) = −z
∂2w(x,t)

∂x2                                                                    (8) 

 
then, we obtain: 

 
σxx(x, z, t) = (λ + 2μ)e(x, z, t) − βθ(x, z, t).                           (9) 

 
The upper and lower surfaces of the beam do not 

have heat transfer, so 
∂𝑇(𝑥,𝑧,𝑡)

∂𝑧
|
𝑧=±

ℎ

2

= 0. Hence, for a 

nanobeam, we can assume the temperature depends 
on a sin(𝑝𝑧) function through the thickness direction 

of the beam, where 𝑝 =
𝜋

ℎ
, which gives (Green and 

Naghdi, 1993): 
  

𝜃(𝑥, 𝑧, 𝑡) = 𝑇(𝑥, 𝑧, 𝑡) − 𝑇0 = 𝜑(𝑥, 𝑡)sin (𝑝𝑧)                      (10) 
 
and 

 
Q(x, z, t) = q(x, t)sin (pz)                                                         (11) 

 

where, 𝜃(𝑥, 𝑧, 𝑡) is devoted to the temperature 
increment. Hence, from Eqs. 4, 5, and 10 we obtain: 

  

 
∂4𝑤(𝑥,𝑡)

∂𝑥4
+

12𝜌

ℎ2(𝜆+2𝜇)

∂2𝑤(𝑥,𝑡)

∂𝑡2
+

12𝛽

ℎ3(𝜆+2𝜇)

∂2𝜑(𝑥,𝑡)

∂𝑥2 ∫  
ℎ/2

−ℎ/2
𝑧sin (𝑝𝑧)𝑑𝑧 = 0.                                (12) 

 
After doing the integrations, the Eq. 12 has the 

form: 
 

∂4𝑤(𝑥,𝑡)

∂𝑥4
+

12𝜌

ℎ2(𝜆+2𝜇)
�̈�(𝑥, 𝑡) +

24𝛽

ℎ𝜋2(𝜆+2𝜇)

∂2𝜑(𝑥,𝑡)

∂𝑥2
= 0.           (13) 

 
Eq. 6 can be written as: 
 

(
∂

∂𝑡
+

𝐾2

𝐾1
) (

∂2𝜃

∂𝑥2 +
∂2𝜃

∂𝑧2) =
𝜌𝐶𝑟

𝐾1

∂2𝜃

∂𝑡2 +
𝛽𝑇0

𝐾1

∂2𝑒

∂𝑡2 −
1

𝐾1
𝑄(𝑥, 𝑧, 𝑡).  (14) 

 
Substituting Eqs. 8, 10, and 11 into 14, we get  

 

(
∂

∂𝑡
+

𝐾2

𝐾1
) (

∂2𝜑

∂𝑥2 − 𝜑𝑝2) sin(𝑝𝑧) =
∂2

∂𝑡2 (
𝜌𝐶𝑉

𝐾1
𝜑 sip(𝑝𝑧) −

𝛽𝑇0

𝐾1
𝑧

∂2𝑤

∂𝑥2
) −

1

𝐾1
𝑞(𝑥, 𝑡) sin(𝑝𝑧).                                                 (15) 

 

In Eq. 15, both sides will be multiplied by z and 
will be integrated relating to z from 

  

(−
ℎ

2
) 𝑡𝑜 (

ℎ

2
),  

 
then we obtain: 
 

(
∂

∂𝑡
+

𝐾2

𝐾1
) (

∂2𝜑

∂𝑥2 − 𝜑𝑝2) =
∂2

∂𝑡2 (𝜑 −
𝛽𝑇0

𝜀𝐾1

𝜋2ℎ

24

∂2𝑤

∂𝑥2) −

1

𝐾1
𝑞(𝑥, 𝑡)                                                                                            (16) 

 

where, 𝜀 =
𝜌𝐶𝑣

𝐾1
.  The Eq. 9 takes the form: 

 
𝜎𝑥𝑥 = (𝜆 + 2𝜇)𝑒 − 𝛽𝜑sin (𝑝𝑧)                                                (17) 

2.2. Solution of the governing equations 

The following non-dimensional variables will be 
used (Biot, 1955): 

 
(𝑥′, 𝑤′ , ℎ′, ℓ′) = 𝜀𝑐0(𝑥, 𝑤, ℎ, ℓ), (𝑡′, 𝜏′) = 𝜀𝑐0

2(𝑡, 𝜏), 

 𝜎′ =
𝜎

𝜆+2𝜇
, 𝜑′ =

𝜑

𝑇0
, 𝑞′ =

𝑞

𝑇0𝐾𝜀2𝑐0
2 , 𝑐0

2 =
𝜆+2𝜇

𝜌
.                          (18) 

 
Then, we have 

   

 

∂4𝑤(𝑥,𝑡)

∂𝑥4 + 𝜀1�̈�(𝑥, 𝑡) + 𝜀2
∂2𝜑(𝑥,𝑡)

∂𝑥2 = 0                                         (19) 

(
∂

∂𝑡
+

𝐾2

𝐾1
) (

∂2𝜑(𝑥,𝑡)

∂𝑥2 − 𝜀3𝜑(𝑥, 𝑡)) =
∂2

∂𝑡2 (𝜑(𝑥, 𝑡) −

𝜀4
∂2𝑤(𝑥,𝑡)

∂𝑥2 ) −
1

𝐾1
𝑞(𝑥, 𝑡)                                                                 (20) 

𝜎𝑥𝑥(𝑥, 𝑧, 𝑡) = 𝑒(𝑥, 𝑧, 𝑡)𝜀5 − 𝜑(𝑥, 𝑡)sin (𝑝𝑧)                               (21) 

 

where, 
 

 𝜀1 =
12

ℎ2 , 𝜀2 =
24𝛽𝑇0

ℎ𝜋2(𝜆+2𝜇)
, 𝜀3 = 𝑝2, 𝜀4 =

𝜋2ℎ𝛽

24𝐾𝜀
,  

 

and 
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𝜀5 =
𝛽𝑇0

(𝜆+2𝜇)
. 

2.3. Laplace transform solution 

We will apply the Laplace transform with the 
following definition: 

 
𝑓‾(𝑥, 𝑠) = ∫ 𝑓(𝑥, 𝑡)𝑒−𝑠𝑡𝑑𝑡.

∞

0
                                                            (22) 

 
Then, the Eqs. 19-21 will take the following 

forms: 
 

 

𝑑4𝑤‾

𝑑𝑥4 + 𝜀1𝑠
2𝑤‾ + 𝜀2

𝑑2𝜗‾

𝑑𝑥2 = 0                                                                           (23) 

(𝑠 +
𝐾2

𝐾1
) (

𝑑2𝜑‾

𝑑𝑥2 − 𝜀3𝜑‾) = 𝑠2 (𝜑‾ − 𝜀4
𝑑2𝑤‾

𝑑𝑥2) −
1

𝐾1
𝑞‾                      (24) 

𝜎‾𝑥𝑥 = 𝑒‾ − 𝜀5𝜑‾sin (𝑝𝑧)                                                                  (25) 
 

and the Eq. 8 takes the form: 
 

 𝑒‾ = −𝑧
𝑑2𝑤‾

𝑑𝑥2
                                                                                          (26) 

 
Assume that the beam is a conductor with 

electrical resistance 𝑅𝑒(Ω), and that it is being 
heated by a specific source due to the thermal effect 
of an electrical voltage connection (Joule’s equation 
of electrical heating) 𝑉(V). Then, Joule’s equation of 
electrical heating is given by: 

 

𝑞(𝑥, 𝑡) =
𝑉2

𝑅𝑒
𝑡.                                                                               (27)  

 

Then, after applying the Laplace transform, we 
have: 

 

q‾ =  
V2

Res2                                                                                         (28) 

 
which gives: 

 

(𝑠 +
𝐾2

𝐾1
) (

𝑑2𝜑‾

𝑑𝑥2 − 𝜀3𝜑‾) = 𝑠2 (𝜑‾ − 𝜀4
𝑑2𝑤‾

𝑑𝑥2) −
1

𝐾1

𝑉2

𝑅𝑒𝑠
2.            (29) 

 
We will re-write the Eqs. 23 and 24 in the form: 

 
(𝐷4 + 𝜀1𝑠

2)𝑤‾ + 𝜀2𝐷
2𝜑‾ = 0                                                    (30) 

 

and  
 

𝑠2𝜀4𝐷
2𝑤‾ + (𝐷2 (𝑠 +

𝐾2

𝐾1
) − (𝑠2 + 𝑠𝜀3 + 𝜀3

𝐾2

𝐾1
))𝜑‾ =

−
1

𝐾1

𝑉2

𝑅𝑒𝑠
2  

                                                                                                         (31) 

 
or, we have 

 
𝐷2𝑤‾ + (𝜀6𝐷

2 − 𝜀7)𝜑‾ = −𝜀8                                                    (32) 

 
where, 

 

𝐷𝑟 =
𝑑𝑟

𝑑𝑥𝑟 ,  �̃� =
𝐾2

𝐾1
, 𝜀6 =

(𝑠+�̃�)

𝑠2𝜀4
, 𝜀7 =

(𝑠2+𝑠𝜀3+𝜀3�̃�)

𝑠2𝜀4
  

 
and 

 

𝜀8 =
𝑉2

𝐾1𝜀4𝑅𝑒𝑠
4
. 

 
Eliminating Eqs. 30 and 32, we obtain: 
 

(𝐷6 − 𝐿𝐷4 + 𝑀𝐷2 − 𝑁)𝑤‾ = 0                                               (33) 

 
and  

 
(𝐷6 − 𝐿𝐷4 + 𝑀𝐷2 − 𝑁)𝜑‾ = −𝜓                                           (34) 

  
where, 

 

𝐿 =
(𝜀7+𝜀2)

𝜀6
, 𝑀 = 𝜀1𝑠

2, 𝑁 =
𝜀1𝜀7𝑠

2

𝜀6
, and 𝜓 =

𝜀1𝜀8𝑠
2

𝜀6
. 

 
The general solution of the Eq. 33 is as follows: 
  

𝑤‾ = ∑  3
𝑗=1 𝐴𝑗 sinh (𝑘𝑗(ℓ − 𝑥)).                                               (35) 

 
The general solution of the Eq. 34 is as follows: 
  

φ‾ =
ψ

N
+ ∑  3

j=1 Bjsinh (kj(ℓ − x))                                           (36) 

 
where, ±𝑘1, ±𝑘2, ±𝑘3 are the roots of the 
characteristic equation 

 
𝑘6 − 𝐿𝑘4 + 𝑀𝑘2 − 𝑁 = 0.                                     (37) 
 

 

To get the relation between the parameters 𝐴𝑗  

and 𝐵𝑗 , we use the relation in (30), which gives: 

 
(𝐾𝑗

4 + 𝜀1𝑠
2)𝐴𝑗 + 𝜀2𝐾𝑗

2𝐵𝑗 = 0,  𝑗 = 1,2,3.                             (38) 

Then we have: 
 

𝜑‾ =
𝜓

𝑁
−

1

𝜀2

∑  3
𝑗=1

(𝐾𝑗
4+𝜀1𝑠

2)

𝐾𝑗
2 𝐴𝑗 sinh (𝑘𝑗(ℓ − 𝑥)).                   (39) 

 
Applying the boundary conditions in Eqs. 35 and 

36, we get (Youssef and Al Thobaiti, 2022): 
 

∑  3
𝑗=1  𝐴𝑗sinh (𝑘𝑗ℓ) = 0                                                              (40) 

∑  3
𝑗=1  𝑘𝑗

2𝐴𝑗sinh (𝑘𝑗ℓ) = 0                                                         (41) 

 

and 
 

∑  3
𝑗=1

(𝐾𝑗
4+𝜀1𝑠

2)

𝐾𝑗
2 𝐴𝑗 sinh(𝑘𝑗ℓ) =

𝜀2𝜓

𝑁
.                                         (42) 

 
Then, by solving the Eqs. 40-42, we get the 

parameters 𝐴1, 𝐴2, 𝐴3  as follows: 
 

𝐴1 =
𝑘1

2𝑘2
2𝑘3

2𝜀2𝜓

𝜀1𝑠
2(𝑘1

2−𝑘2
2)(𝑘1

2−𝑘3
2)𝑁sinh (𝑘1ℓ)

, 

𝐴2 =
𝑘1

2𝑘2
2𝑘3

2𝜀2𝜓

𝜀1𝑠
2(𝑘2

2−𝑘1
2)(𝑘2

2−𝑘3
2)𝑁sinh (𝑘2ℓ)

   

 

and 
 

𝐴3 =
𝑘1

2𝑘2
2𝑘3

2𝜀2𝜓

𝜀1𝑠
2(𝑘3

2−𝑘1
2)(𝑘3

2−𝑘2
2)𝑁sinh (𝑘3ℓ)

 . 

 
That completes the solution of the Laplace 

transform domain. The lateral deflection function is 
as follows: 
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𝑤‾ (𝑥, 𝑠) =
𝜀2𝜓

𝜀1𝑠
2

[
 
 
 
 
 

𝑘1
2𝑘2

2𝑘3
2sinh (𝑘1(ℓ−𝑥))

(𝑘1
2−𝑘2

2)(𝑘1
2−𝑘3

2)𝑁sinh (𝑘1ℓ)
+

𝑘1
2𝑘2

2𝑘3
2sinh (𝑘2(ℓ−𝑥))

(𝑘2
2−𝑘1

2)(𝑘2
2−𝑘3

2)𝑁sinh (𝑘2ℓ)
+

𝑘1
2𝑘2

2𝑘3
2sinh (𝑘3(ℓ−𝑥))

(𝑘3
2−𝑘1

2)(𝑘3
2−𝑘2

2)𝑁sinh (𝑘3ℓ) ]
 
 
 
 
 

                                (43) 

  
and the temperature increment function is as 
follows: 

 

𝜃‾(𝑥, 𝑠) =
𝜓sin(𝑝𝑧)

𝜀1𝜀7𝑠2

𝜀6

+

       
𝜓sin(𝑝𝑧)

𝜀1𝑠
2

[
 
 
 
 
 
(𝐾1

4+𝜀1𝑠
2)𝑘1

2𝑘2
2𝑘3

2 sinh(𝑘1(ℓ−𝑥))

𝐾1
2(𝑘1

2−𝑘2
2)(𝑘1

2−𝑘3
2)Nsinh(𝑘1ℓ)

+

(𝐾2
4+𝜀1𝑠

2)𝑘1
2𝑘2

2𝑘3
2 sinh(𝑘2(ℓ−𝑥))

𝐾2
2(𝑘2

2−𝑘1
2)(𝑘2

2−𝑘3
2)Nsinh(𝑘2ℓ)

+

(𝐾3
4+𝜀1𝑠

2)𝑘1
2𝑘2

2𝑘3
2 sinh(𝑘3(ℓ−𝑥))

𝐾3
2(𝑘3

2−𝑘1
2)(𝑘3

2−𝑘2
2)Nsinh(𝑘3ℓ) ]

 
 
 
 
 

.                           (44) 

  
The strain takes the form: 
 

𝑒‾(𝑥, 𝑧, 𝑠) =
−𝑧𝜀2𝜓

𝜀1𝑠2

[
 
 
 
 
 

𝑘1
2𝑘2

2𝑘3
2𝑘1

2 sinh(𝑘1(ℓ−𝑥))

(𝑘1
2−𝑘2

2)(𝑘1
2−𝑘3

2)Nsinh(𝑘1ℓ)
+

𝑘1
2𝑘2

2𝑘3
2𝑘2

2 sinh(𝑘2(ℓ−𝑥))

(𝑘2
2−𝑘1

2)(𝑘2
2−𝑘3

2)Nsinh(𝑘2ℓ)
+

𝑘1
2𝑘2

2𝑘3
2𝑘3

2 sinh(𝑘3(ℓ−𝑥))

(𝑘3
2−𝑘1

2)(𝑘3
2−𝑘2

2)Nsinh(𝑘3ℓ) ]
 
 
 
 
 

 .                     (45) 

  
The strain-energy density function through the 

nanobeam is given by Elsibai* and Youssef (2011): 
 

𝜛(𝑥, 𝑧, 𝑡) = ∑𝑖,𝑗
3  

1

2
𝜎𝑖𝑗(𝑥, 𝑧, 𝑡)𝑒𝑖𝑗(𝑥, 𝑧, 𝑡) =

1

2
𝜎(𝑥, 𝑧, 𝑡)𝑒(𝑥, 𝑧, 𝑡)                                                                      (46) 

  

2.4. Numerical inversion of the Laplace 
transform 

In order to obtain the expressions of the studied 
domain variables in the time domain, it is necessary 
to apply the inverse of the Laplace Transform. 
Obtaining these conversions may take a long time 
and be tedious. Numerical algorithms and 
approximate methods are used in this case. By using 
the following Riemann sum approximation formula, 
any function 𝑓(𝑥, 𝑠) in the Laplace domain will be 
inverted into a function 𝑓(𝑥, 𝑡) (Honig and Hirdes, 
1984). 
 

L−1 (f‾(s)) = f(t) ≈
eυt

t
[
1

2
f‾(υ) + Re ∑ n=1

N
  (−1)nf‾ (υ +

inπ

t
)],                                                       (47) 

 
where, 𝑅𝑒 represents the real part, while 𝑖 
represents the imaginary part. For faster 
convergence, several experiments confirmed that 𝜐 
can satisfy the relation 𝜐𝑡 ≈ 4.7. 

3. Numerical results 

Since copper is used as a thermoelastic material, 
the following values with various physical constants 
have been used (Youssef and Al Thobaiti, 2022): 
 
𝛼𝑇 = 1.78(10)−5 K−1, 𝜌 = 8954 kg m−3, 

𝑇0 = 300 K, 𝐶𝜈 = 383.1Jkg−1 K−1,  
𝜆 = 77.6 × 109 N m−2, 
𝜇 = 38.6 × 109Nm−2, 𝐾 = 386Wm−1𝐾−1. 
 

The electrical resistance of graphene in the 
nanoscale has values 𝑅𝑒 = 500Ω (Nirmalraj et al., 
2011). The aspect ratios of the nanobeam are fixed 
as ℓ/ℎ = 8 and 𝑏 = ℎ/2. We will take the range of 
the nanobeam length ℓ(1 − 100) × 10−12 m, and the 
original time t of order 10−12sec.  The figures were 
organized by using the dimensionless variables for 
nanobeam length ℓ = 1.0, 𝜃0 = 1.0, 𝑧 = ℎ/4, and 𝑡 =
1.0. The situation �̃� = 0 represents the Green-
Naghdi type-I model, while the situation 
 

�̃� =
𝐾∗

𝐾
=

(𝜆+2𝜇)𝐶𝑣

4𝐾
    

 

represents the Green-Naghdi type-III model.  

4. Discussion 

Two groups of figures show the numerical results 
of the problem; the first group represents the 
distributions of the temperature increment, 
vibration (lateral deflection), cubical deformation, 
stress, and strain-energy density when the graphene 
nanostrip's electrical resistance value is constant 
and equal to the value Res = 500Ω and for three 
different electrical voltage values 𝑉 = (1.0,1.1,1.2)V. 
While the second group represents the distributions 
of the same functions when the graphene nanostrip's 
electrical voltage value is constant and equal to the 
value 𝑉 = 1.0 V and for three different electrical 
resistance values Res = (500,550,600)Ω. 

Figs. 2a and 2b represent the temperature 
increment with respect to x due to the various values 
of an electrical voltage in the case of the Green-
Naghdi type-I and type-III model, respectively. It is 
observed that an increase in an electrical voltage 
results in an increase in the temperature increment. 

Figs. 3a and 3b represent the vibration (lateral 
deflection) with respect to x due to the various 
values of an electrical voltage in the case of the 
Green-Naghdi type-I and type-III models, 
respectively. It is observed that an increase in an 
electrical voltage results in an increase in the lateral 
deflection (vibration). 

Figs. 4a and 4b represent cubical deformation 
(strain) with respect to x due to the various values of 
an electrical voltage in the case of the Green-Naghdi 
type-I and type-III model, respectively. It is observed 
that an increase in electrical voltage results in an 
increase in the strain's absolute value (the cubical 
deformation). 

Figs. 5a and 5b represent stress with respect to x 
due to the various values of an electrical voltage in 
the case of the Green-Naghdi type-I and type-III 
model, respectively. It is observed that an increase in 
an electrical voltage results in an increase in the 
stress's absolute value. 

Figs. 66a and 6b represent strain energy density 
with respect to x due to the various values of an 
electrical voltage in the case of the Green-Naghdi 
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type-I and type-III model, respectively. It is observed 
that an increase in an electrical voltage results in an 
increase in the strain energy density's absolute 
value. This means that both the vibration and the 
temperature increment that has been produced 
along the nanobeam can be tuned using electrical 
voltage.  

Figs. 7a and 7b represent the temperature 
increment with respect to x due to the various values 
of electrical resistance in the case of the Green-
Naghdi type-I and type-III model, respectively. It is 
observed that an increase in electrical resistance 
results in a decrease in the temperature increment. 

 

  
a: type-I model when Res = 500Ω b: type-III model when Res=500Ω 

Fig. 2: The temperature increment in the case of the Green-Naghdi 
 

  
a: type-I model when Res = 500Ω b: type-III model when Res = 500Ω 

Fig. 3: The lateral deflection in the case of the Green-Naghdi 
 

  
a: type-I model when Res = 500Ω b: type-III model when Res = 500Ω 

Fig. 4: The volumetric deformation in the case of the Green-Naghdi 
 

Figs. 8a and 8b represent the vibration (lateral 
deflection) with respect to x due to the various 
values of electrical resistance in the case of the 
Green-Naghdi type-I and type-III model, respectively. 
It is observed that an increase in an electrical 
resistance result in decrease in the lateral deflection 
(vibration). Figs. 9a and 9b represent cubical 

deformation (strain) with respect to x due to the 
various values of electrical resistance in the case of 
the Green-Naghdi type-I and type-III models, 
respectively. It is observed that an increase in 
electrical resistance results in a decrease in the 
strain's absolute value (the cubical deformation). 
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a: type-I model when Res = 500Ω b: type-III model when Res = 500Ω 

Fig. 5: The stress component in the case of the Green-Naghdi 
 
 

  
a: type-I model when Res = 500Ω b: type-III model when Res = 500Ω 

Fig. 6: The strain energy density in the case of the Green-Naghdi 
 
 

  
a: type-I model when 𝑉 = 1.0 V b: type-III model when 𝑉 = 1.0 V 

Fig. 77: The temperature increment in the case of the Green-Naghdi 
 

Figs. 10a and 10b represent stress with respect to 
x due to the various values of electrical resistance in 
the case of the Green-Naghdi type-I and type-III 
models, respectively. It is observed that an increase 
in electrical resistance results in a decrease in the 
stress's absolute value. 

Figs. 11a and 11b represent strain energy density 
with respect to x due to the various values of 
electrical resistance in the case of the Green-Naghdi 
type-I and type-III models, respectively. It is 
observed that an increase in electrical resistance 
results in a decrease in the strain energy density's 
absolute value. This means that both the vibration 

and the temperature increment that has been 
produced along the nanobeam can be tuned using 
electrical resistance. 

5. Conclusion 

In this work, we studied thermoelastic 
nanobeams using non-Fourier conducted heat. At the 
first end of the nanobeam, nanostrip graphene is 
linked by a low voltage electrical current. The 
generalization theory of thermoelasticity's Lord-
Shulman model was used. The nanobeam was 
thermally stressed by a low voltage current flowing 
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over the graphene nanostrip. It was found that all the 
functions investigated are significantly influenced by 
voltage and resistance. The nano-strip of graphene 
could be used as a tuner to control the vibration and 
thermal increment of the nanobeam by controlling 
its electrical voltage and electrical resistance. 

Overall, the results showed that the Green-Naghdi 
type-I and III model agrees with the physical 
behavior of graphene strips and copper nanobeam. 

These results are in agreement with references such 
as (Abouelregal, 2022; Al-Lehaibi and Youssef, 2015; 
Alzahrani and Alghamdi, 2023; Grover, 2012; Grover 
and Seth, 2019; Manolis and Beskos, 1980; Sharma 
and Grover, 2011; Youssef and Salem, 2022; Zakaria 
et al., 2022). We will apply an electrical voltage as a 
heat source on a variety of beam types and in various 
heat conduction laws in future work. 

 
 

  
a: type-I model when 𝑉 = 1.0 V b: type-III model when 𝑉 = 1.0 V 

Fig. 8: The lateral deflection in the case of the Green-Naghdi 
 
 

  
a: type-I model when 𝑉 = 1.0 V b: type-III model when 𝑉 = 1.0 V 

Fig. 9: The volumetric deformation in the case of the Green-Naghdi 
 
 

  

a: type-I model when 𝑉 = 1.0 V b: type-III model when 𝑉 = 1.0 V 

Fig. 10: The stress component in the case of the Green-Naghdi 
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a: type-I model when 𝑉 = 1.0 V b: type-III model when 𝑉 = 1.0 V 

Fig. 11: The strain energy density in the case of the Green-Naghdi 
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