International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 11 (November 2023), Pages: 96-108

----------------------------------------------

 Review Paper

Detailed and simplified plasma models in combined-cycle magnetohydrodynamic power systems

 Author(s): 

 Osama A. Marzouk *

 Affiliation(s):

 College of Engineering, University of Buraimi, Al Buraimi, Oman

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-1435-5318

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2023.11.013

 Abstract

Magnetohydrodynamics (MHD) is a subject concerned with the dynamics of electrically conducting fluids (plasma) and can be applied in electric power generation. As a unique technology for producing direct-current electricity without moving parts, it can be utilized within a high-temperature topping power cycle to be combined with a traditional bottoming power cycle, forming a combined-cycle MHD system. This study presents governing equations for the electric field and current density field within a moving plasma subject to an applied magnetic field. The modeling equations are described at four descending levels of complexity. Starting with the first level of modeling, which is the most general case, where no assumptions are made regarding the electric field, plasma velocity field, applied magnetic field, or electrode geometry. In the second level of modeling, the magnetic field is treated as one-dimensional. In the third level of modeling, a specific Faraday-type magnetohydrodynamics plasma generator channel is considered, having two continuous electrodes acting as parallel constant-voltage terminals. In the fourth (and simplest) level of modeling, an additional approximation is made by setting the Hall parameter to zero and replacing all vector fields with scalar quantities. For that simplest model, a representative set of operation conditions (electric conductivity 20 S/m, temperature 2800 K, supersonic plasma gas speed 2000 m/s with Mach 2.134, and magnetic flux density 5 T) shows that the optimum idealized electric power that can be extracted from a unit volume of plasma is estimated as 500 MW/m3. This is a much larger volumetric power density than typical values encountered in reciprocating piston-type engines (0.2 MW/m3) or rotary gas turbine engines (0.5 MW/m3). Such an extremely high power density enables very compact power generation units.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 MHD, Magnetohydrodynamics, Plasma, Channel, Faraday

 Article history

 Received 14 August 2023, Received in revised form 30 October 2023, Accepted 30 October 2023

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Marzouk OA (2023). Detailed and simplified plasma models in combined-cycle magnetohydrodynamic power systems. International Journal of Advanced and Applied Sciences, 10(11): 96-108

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 

 Tables

 Table 1 

----------------------------------------------   

 References (58)

  1. Aithal SM (2008). Analysis of optimum power extraction in a MHD generator with spatially varying electrical conductivity. International Journal of Thermal Sciences, 47(8): 1107-1112. https://doi.org/10.1016/j.ijthermalsci.2007.09.001   [Google Scholar]
  2. Aithal SM (2009). Characteristics of optimum power extraction in a MHD generator with subsonic and supersonic inlets. Energy Conversion and Management, 50(3): 765-771. https://doi.org/10.1016/j.enconman.2008.09.037   [Google Scholar]
  3. Aminudin MA, Kamarudin SK, Lim BH, Majilan EH, Masdar MS, and Shaari N (2023). An overview: Current progress on hydrogen fuel cell vehicles. International Journal of Hydrogen Energy, 48(11): 4371-4388. https://doi.org/10.1016/j.ijhydene.2022.10.156   [Google Scholar]
  4. Bera TK, Bohre AK, Ahmed I, Bhattacharya A, and Bhowmik PS (2022). Magnetohydrodynamic (MHD) power generation systems. In: Bohre AK, Chaturvedi P, Kolhe ML, and Singh SN (Eds.), Planning of hybrid renewable energy systems, electric vehicles and microgrid: Modeling, control and optimization: 905-929. Springer, Singapore, Singapore. https://doi.org/10.1007/978-981-19-0979-5_34   [Google Scholar]
  5. Blackman VH, Jones Jr MS, and Demetriades A (1961). MHD power generation studies in rectangular channels. In the Proceedings of the 2nd Symposium on the Engineering Aspects of Magnetohydrodynamics, Columbia University Press, Philadelphia, USA: 180–210.   [Google Scholar]
  6. Borghi CA, Massarini A, Mazzanti G, and Ribani PL (1992). Steady state descriptions of MHD plasma flows. In the 11th International Conference on MHD Electrical Power Generation, International Academic Publishers, 3: 770-775.   [Google Scholar]
  7. Cébron D, Viroulet S, Vidal J, Masson JP, Viroulet P (2017). Experimental and theoretical study of magnetohydrodynamic ship models. PLOS ONE 12(10): e0186166. https://doi.org/10.1371/journal.pone.0186166   [Google Scholar] PMid:28977028 PMCid:PMC5627937
  8. Ceviz MA and Kaymaz İ (2005). Temperature and air–fuel ratio dependent specific heat ratio functions for lean burned and unburned mixture. Energy Conversion and Management, 46(15–16): 2387-2404. https://doi.org/10.1016/j.enconman.2004.12.009   [Google Scholar]
  9. Chen XQ, Zhao LZ, and Peng AW (2022). Performance analysis of a new helical channel seawater MHD thruster. In the 32nd International Ocean and Polar Engineering Conference, Shanghai, China: ISOPE-I-22-526.   [Google Scholar]
  10. Cheng K, Wang Y, Xu J, Qin J, and Jing W (2022). A novel liquid metal MHD enhanced Closed-Brayton-Cycle power generation system for hypersonic vehicles: Thermodynamic analysis and performance evaluation with finite cold source. Energy Conversion and Management, 268: 116068. https://doi.org/10.1016/j.enconman.2022.116068   [Google Scholar]
  11. Danilevich JB, Antipov VN, Kruchinina IY, Khozikov YP, and Ivanova AV (2010). Prospective permanent magnet turbogenerator design for local power engineering. In the XIX International Conference on Electrical Machines, IEEE, Rome, Italy: 1-4. https://doi.org/10.1109/ICELMACH.2010.5608254   [Google Scholar]
  12. Davidson PA (2001). An introduction to magnetohydrodynamics. Cambridge University Press, Cambridge, USA. https://doi.org/10.1017/CBO9780511626333   [Google Scholar]
  13. Di Sia P (2021). Birth, development and applications of quantum physics: a transdisciplinary approach. World Scientific News, 160: 232–246. https://doi.org/10.31219/osf.io/2tyxe   [Google Scholar]
  14. Esmaeilzadehazimi MA, Manesh MHK, Heleyleh BB, and Modabbaer HV (2019). 4E analysis of integrated MHD-combined cycle. International Journal of Thermodynamics, 22(4): 219-228. https://doi.org/10.5541/ijot.570540   [Google Scholar]
  15. Everett CN and Ryan CN (2023). A linear magnetic reconnection based plasma thruster for spacecraft propulsion. American Institute of Aeronautics and Astronautics SciTech 2023 Forum. https://doi.org/10.2514/6.2023-0448.vid   [Google Scholar]
  16. Gilbey JD (2023). SI units. Anaesthesia and Intensive Care Medicine, 24(4): 244–247. https://doi.org/10.1016/j.mpaic.2022.12.030   [Google Scholar]
  17. Ishikwa M, Yuhara M, and Fujino T (2007). Three-dimensional computation of magnetohydrodynamics in a weakly ionized plasma with strong MHD interaction. Journal of Materials Processing Technology, 181(1–3): 254-259. https://doi.org/10.1016/j.jmatprotec.2006.03.032   [Google Scholar]
  18. Jones AR (1985). MHD advanced power train: Phase 1, final report: Volume 2, development program plan (No. DOE/PC/60575-T1-Vol. 2). Westinghouse Electric Corp, Advanced Energy Systems Division, Pittsburgh, USA. https://doi.org/10.2172/93533   [Google Scholar]
  19. Jost R (1996). The cooling of internal degrees of freedom of polyatomic molecules in supersonic free jets. In: Fausto R (Ed.), Low temperature molecular spectroscopy: 249-270. Springer Netherlands, Dordrecht, Netherlands. https://doi.org/10.1007/978-94-009-0281-7_10   [Google Scholar]
  20. Kayukawa N (2004). Open-cycle magnetohydrodynamic electrical power generation: A review and future perspectives. Progress in Energy and Combustion Science, 30(1): 33-60. https://doi.org/10.1016/j.pecs.2003.08.003   [Google Scholar]
  21. Khazin LM, Tarasov PI, and Furzikov VV (2019). Use of gas-turbine engines for mining dump trucks in the conditions of the north. Perm Journal of Petroleum and Mining Engineering, 29(3): 290-300. https://doi.org/10.15593/2224-9923/2019.3.8   [Google Scholar]
  22. Kuo KK (2005). Principles of combustion. 2nd Edition, John Wiley and Sons, Hoboken, USA.   [Google Scholar]
  23. Leishman JG (2023). Introduction to aerospace flight vehicles. Embry-Riddle Aeronautical University, Daytona Beach, USA. https://doi.org/10.15394/eaglepub.2022.1066   [Google Scholar]
  24. Li Y, Li Y, Lu H, Zhu T, Zhang B, Chen F, and Zhao X (2011). Preliminary experimental investigation on MHD power generation using seeded supersonic argon flow as working fluid. Chinese Journal of Aeronautics, 24(6): 701-708. https://doi.org/10.1016/S1000-9361(11)60082-4   [Google Scholar]
  25. Liu Z, Tian B, Li Y, Guo Z, Zhang Z, Luo Z, Zhao L, Lin Q, Lee C, and Jiang Z (2023). Evolution of thermoelectric generators: From application to hybridization. Small, 19(48): 2304599. https://doi.org/10.1002/smll.202304599   [Google Scholar] PMid:37544920
  26. Macheret SS, Schneider M, Murray R, Zaidi S, Vasilyak L, and Miles R (2004). RDHWT/MARIAH II MHD modeling and experiments review. In the 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, USA. https://doi.org/10.2514/6.2004-2485   [Google Scholar]
  27. Markoulakis E, Vanderelli T, Frantzeskakis L (2022). Real time display with the ferrolens of homogeneous magnetic fields. Journal of Magnetism and Magnetic Materials, 541: 168576. https://doi.org/10.1016/j.jmmm.2021.168576   [Google Scholar]
  28. Marzouk OA (2017). Combined oxy-fuel magnetohydrodynamic power cycle. ArXiv Preprint ArXiv:1802.02039. https://doi.org/10.48550/arXiv.1802.02039   [Google Scholar]
  29. Marzouk OA (2018a). Multi-physics mathematical model for weakly-ionized plasma flows. American Journal of Modern Physics, 7(2): 87-102. https://doi.org/10.11648/j.ajmp.20180702.14   [Google Scholar]
  30. Marzouk OA (2018b). Assessment of three databases for the NASA seven-coefficient polynomial fits for calculating thermodynamic properties of individual species. International Journal of Aeronautical Science and Aerospace Research, 5(1): 150-163. https://doi.org/10.19070/2470-4415-1800018   [Google Scholar]
  31. Marzouk OA (2022). Land-Use competitiveness of photovoltaic and concentrated solar power technologies near the Tropic of Cancer. Solar Energy, 243: 103-119. https://doi.org/10.1016/j.solener.2022.07.051   [Google Scholar]
  32. Marzouk OA (2023). Cantera-based Python computer program for solving steam power cycles with superheating. International Journal of Emerging Technology and Advanced Engineering, 13(3): 63-73. https://doi.org/10.46338/ijetae0323_06   [Google Scholar]
  33. Mcclaine A, Swallom D, and Kessler R (1985). Experimental investigation of subsonic combustion driven MHD generator performance. Journal of Propulsion and Power, 1(4): 263-269. https://doi.org/10.2514/3.22792   [Google Scholar]
  34. Messerle HK (1995). Magnetohydrodynamic electrical power generation. John Wiley and Sons, Hoboken, USA.   [Google Scholar]
  35. Mikheev AV, Kayukawa N, Okinaka N, Kamada Y, and Yatsu S (1991). High-temperature coal-syngas plasma characteristics for advanced MHD power generation. IEEE Transactions on Energy Conversion, 21(1): 242-249. https://doi.org/10.1109/TEC.2005.847994   [Google Scholar]
  36. Miyashita T (2023). A fine-structure constant can be explained using the electrochemical method. Journal of Modern Physics, 14(2): 160-170. https://doi.org/10.4236/jmp.2023.142011   [Google Scholar]
  37. Murray R, Zaidi S, Kline J, Shneider M, Macheret S, and Miles R (2003). Investigation of a Mach 3 cold air MHD channel. In the 34th AIAA Plasmadynamics and Lasers Conference. Orlando, Florida. https://doi.org/10.2514/6.2003-4282   [Google Scholar]
  38. NCBI (2023). Ionization energy in the periodic table of elements. National Center for Biotechnology Information, Bethesda, USA.   [Google Scholar]
  39. NTRS (1953). Equations, tables, and charts for compressible flow. NASA Technical Reports Server, Ames Aeronautical Laboratory, Ames Aeronautical Staff, Moffett Field, USA.   [Google Scholar]
  40. Okamura T, Kabashima S, Shioda S, and Sanada Y (1985). Superconducting magnet for a disc generator of the FUJI-1 MHD facility. Cryogenics, 25(9): 483-491. https://doi.org/10.1016/0011-2275(85)90069-4   [Google Scholar]
  41. Okunoa Y, Okamura T, Yoshikawa K, Suekane T, Tsuji K, Okubo M, Maeda T, Murakami T, Yamasaki H, Kabashima S, Shioda S, and Hasegawa Y (1999). High enthalpy extraction experiments with Fuji-1 MHD blow-down facility. Energy Conversion and Management, 40(11): 1177-1190. https://doi.org/10.1016/S0196-8904(99)00006-0   [Google Scholar]
  42. Panchenko VP (2002). Preliminary analysis of the "Sakhalin" world largest pulsed MHD generator. In the 33rd Plasmadynamics and Lasers Conference, Maui, Hawaii. https://doi.org/10.2514/6.2002-2147   [Google Scholar]
  43. Pavshuk VA and Panchenko VP (2008). Open-cycle multi-megawatt MHD space nuclear power facility. Atomic Energy, 105: 175-186. https://doi.org/10.1007/s10512-008-9082-1   [Google Scholar]
  44. Pengyu Y, Bailing Z, Yiwen L, Yutian W, Chengduo D, Hao F, Ling G (2016). Investigation of MHD power generation with supersonic non-equilibrium RF discharge. Chinese Journal of Aeronautics, 29(4): 855-862. https://doi.org/10.1016/j.cja.2016.06.018   [Google Scholar]
  45. Raja AK, Srivastava AP, and Dwivedi M (2006). Power plant engineering. New Age International, New Delhi, India.   [Google Scholar]
  46. Rosa RJ, Krueger CH, and Shioda CH (1991). Plasmas in MHD power generation. IEEE Transactions on Plasma Science, 19(6): 1180-1190. https://doi.org/10.1109/27.125040   [Google Scholar]
  47. Sarkar DK (2017). Chapter 1: General description of thermal power plants. In: Sakar D (Ed.), Thermal power plant: Pre-operational activities: 1–31. Elsevier, Amsterdam, Netherlands. https://doi.org/10.1016/B978-0-08-101112-6.00001-0   [Google Scholar]
  48. Sawhney BK and Verma SS (1990). International journal of energy research. Atomic Energy, 14(4): 433-447. https://doi.org/10.1002/er.4440140408   [Google Scholar]
  49. Seibert ML and Nieh S (2016). Control of an air siphon nozzle using hydrogen and gases other than air. International Journal of Hydrogen Energy, 41(5): 683-689. https://doi.org/10.1016/j.ijhydene.2015.10.068   [Google Scholar]
  50. Sen D, Tunç KM, and Günay ME (2021). Forecasting electricity consumption of OECD countries: A global machine learning modeling approach. Utilities Policy, 70: 101222. https://doi.org/10.1016/j.jup.2021.101222   [Google Scholar]
  51. Smit BA, Zyl EV, Joubert JJ, Meyer W, Prévéral S, Lefèvre CT, and Venter SN (2018). Magnetotactic bacteria used to generate electricity based on Faraday's law of electromagnetic induction. Letters in Applied Microbiology, 66(5): 362-367. https://doi.org/10.1111/lam.12862   [Google Scholar] PMid:29432641
  52. Takeishi K and Krewinkel R (2023). Advanced gas turbine cooling for the carbon-neutral era. International Journal of Turbomachinery, Propulsion and Power, 8(3): 19. https://doi.org/10.3390/ijtpp8030019   [Google Scholar]
  53. Wong YQ and Segall P (2020). Joint inversions of ground deformation, extrusion flux, and gas emissions using physics-based models for the Mount St. Helens 2004–2008 eruption. Geochemistry, Geophysics, Geosystems, 21(12): e2020GC009343. https://doi.org/10.1029/2020GC009343   [Google Scholar]
  54. Woodside CR, Richards G, Huckaby ED, Marzouk OA, Haworth DC, Celik IB, Ochs T, Oryshchyn D, Strakey PA, Casleton KH, Pepper J, Escobar-Vargas J, and Zhao X (2012). Direct power extraction with oxy-combustion: An overview of magnetohydrodynamic research activities at the NETL-regional university alliance (RUA). In the 29th Annual International Pittsburgh Coal Conference, Pittsburgh, USA: 825-843.   [Google Scholar]
  55. Wright JK (1963). Paper 3: Paper 4: Physical principles of MHD generation. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 178(8): 39-47. https://doi.org/10.1243/PIME_CONF_1963_178_195_02   [Google Scholar]
  56. Zhang F, Wang B, Gong Z, Zhang X, Qin Z, and Jiao K (2023). Development of photovoltaic-electrolyzer-fuel cell system for hydrogen production and power generation. Energy, 263(A): 125566. https://doi.org/10.1016/j.energy.2022.125566   [Google Scholar]
  57. Zhao B, Li Y, Zhou C, and Zheng J (2022). Simulation of magnetoplasmadynamic thruster with a fluid model. In 3rd International Conference on Artificial Intelligence and Electromechanical Automation, Changsha, China, 12329: 123290Z. https://doi.org/10.1117/12.2646863   [Google Scholar]
  58. Zhou J, Wei T, and An X (2023). Combining non-thermal plasma technology with photocatalysis: A critical review. Physical Chemistry Chemical Physics, 25: 1538-1545. https://doi.org/10.1039/D2CP04836A   [Google Scholar] PMid:36541425