International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 10 (October 2023), Pages: 229-238

----------------------------------------------

 Original Research Paper

Performance analysis of modified wavelet difference reduction methods in image compression and transmission

 Author(s): 

 T. S. Bindulal *

 Affiliation(s):

 Department of Computer Science, Government College Nedumangad, University of Kerala, Thiruvananthapuram, India

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-2066-6179

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2023.10.025

 Abstract

The wavelet difference reduction (WDR) method, a variant of run-length coding, finds its significance in data transmission applications. Over time, numerous enhanced iterations of WDR methods have emerged. Notably, the Adaptive Scalable WDR method exhibits superior coding gains, as evidenced by the peak signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM), when compared to its predecessors. This paper conducts an exhaustive examination, encompassing both coding performance and time complexity, of various WDR methods vis-à-vis the conventional image compression algorithm SPIHT. Furthermore, it delves into the performance assessment of diverse coding techniques in the realm of encoding arbitrary-shaped objects. The analysis underscores that modified WDR variants demonstrate remarkable prowess in compression, rendering them invaluable for rapid transmission in bandwidth-constrained networks. To substantiate these findings, coding results (measured in terms of PSNR) are derived from the application of these algorithms to standard test images, MRI images, and video still images. The results reveal coding gains ranging from 0.5 dB to 1 dB for regular resolution images and a substantial 2 dB to 12 dB for scalable resolution scenarios, in comparison to traditional coding approaches. Consequently, this analysis underscores the convenience and superiority of modified WDR methods, not only for still images but also for encoding and transmitting arbitrary-shaped objects.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Wavelet difference reduction, Image compression, Peak signal-to-noise ratio, Structural similarity index metric, Arbitrary-shaped object coding

 Article history

 Received 24 June 2023, Received in revised form 8 October 2023, Accepted 11 October 2023

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Bindulal TS (2023). Performance analysis of modified wavelet difference reduction methods in image compression and transmission. International Journal of Advanced and Applied Sciences, 10(10): 229-238

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 

----------------------------------------------   

 References (31)

  1. Berghorn W, Boskamp T, Lang M, and Peitgen HO (2001a). Fast variable run-length coding for embedded progressive wavelet-based image compression. IEEE Transactions on Image Processing, 10(12): 1781-1790. https://doi.org/10.1109/83.974563   [Google Scholar] PMid:18255518
  2. Berghorn W, Boskamp T, Lang M, and Peitgen HO (2001b). Context conditioning and run-length coding for hybrid, embedded progressive image coding. IEEE Transactions on Image Processing, 10(12): 1791-1800. https://doi.org/10.1109/83.974564   [Google Scholar] PMid:18255519
  3. Bindulal TS and Kaimal MR (2006). Adaptive scalable wavelet difference reduction method for efficient image transmission. In: Kalra PK and Peleg S (Eds.), Computer vision, graphics and image processing. Lecture Notes in Computer Science, 4338: 708-717. Springer, Berlin, Germany. https://doi.org/10.1007/11949619_63   [Google Scholar]
  4. Bindulal TS and Kaimal MR (2007). Object coding using a shape adaptive wavelet transform with scalable WDR method. In the 2007 IEEE International Conference on Image Processing, IEEE, San Antonio, USA, 2: 2-325. https://doi.org/10.1109/ICIP.2007.4379158   [Google Scholar]
  5. Bindulal TS and Kaimal MR (2009). Adaptive coding techniques for efficient image processing. Ph.D. Dissertation, University of Kerala, Thiruvananthapuram, India.   [Google Scholar]
  6. Bovik AC (2010). Handbook of image and video processing. 2nd Edition, Academic Press, Cambridge, USA.   [Google Scholar]
  7. Cagnazzo M, Poggi G, and Verdoliva L (2005). Costs and advantages of shape-adaptive wavelet transform for region-based image coding. In the IEEE International Conference on Image Processing 2005, IEEE, Genova, Italy, 3: 3-197. https://doi.org/10.1109/ICIP.2005.1530362   [Google Scholar]
  8. Christopoulos C, Skodras A, and Ebrahimi T (2000). The JPEG2000 still image coding system: An overview. IEEE Transactions on Consumer Electronics, 46(4): 1103-1127. https://doi.org/10.1109/30.920468   [Google Scholar]
  9. Danyali H and Mertins A (2004). Flexible, highly scalable, object-based wavelet image compression algorithm for network applications. IEE Proceedings-Vision, Image and Signal Processing, 151(6): 498-510. https://doi.org/10.1049/ip-vis:20040734   [Google Scholar]
  10. Garg G and Kumar R (2022). Analysis of different image compression techniques: A review. Proceedings of the International Conference on Innovative Computing and Communication. https://doi.org/10.2139/ssrn.4031725   [Google Scholar]
  11. Kamata SI, Niimi M, and Kawaguchi E (1996). A gray image compression using a Hilbert scan. In the Proceedings of 13th International Conference on Pattern Recognition, IEEE, Vienna, Austria, 3: 905-909. https://doi.org/10.1109/ICPR.1996.547299   [Google Scholar]
  12. Kaur M and Wasson V (2015). ROI based medical image compression for telemedicine application. In the Proceedings of 4th International Conference on Eco Friendly Computing and Communication Systems, 70: 579-585. https://doi.org/10.1016/j.procs.2015.10.037   [Google Scholar]
  13. Khandelwal J and Sharma VK (2023). W-VDSR: Wavelet-based secure image transmission using machine learning VDSR neural network. Multimedia Tools and Applications, 82: 42147–42172. https://doi.org/10.1007/s11042-023-15166-7   [Google Scholar]
  14. Lamsrichan P and Sanguankotchakorn T (2006). Embedded image coding using context-based adaptive wavelet difference reduction. In the 2006 International Conference on Image Processing, IEEE, Atlanta, USA: 1137-1140. https://doi.org/10.1109/ICIP.2006.312757   [Google Scholar]
  15. Law YL, Crosby F, Huynh Q, and Nguyen T (2004). Wavelet difference reduction with region-of-interest priority in multispectral video-small target detection. In the 2004 International Conference on Image Processing, IEEE, Singapore, Singapore, 3: 1903-1906. https://doi.org/10.1109/ICIP.2004.1421450   [Google Scholar]
  16. Li S and Li W (2000). Shape-adaptive discrete wavelet transforms for arbitrarily shaped visual object coding. IEEE Transactions on Circuits and Systems for Video Technology, 10(5): 725-743. https://doi.org/10.1109/76.856450   [Google Scholar]
  17. Marinov M, Avresky D, and Nguyen T (2005). Parallel and reliable execution of a WDR algorithm in high-speed networks. In the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems, IEEE, Greenbelt, USA: 27-32. https://doi.org/10.1109/ECBS.2005.55   [Google Scholar]
  18. Martin K, Lukac R, and Plataniotis KN (2006). SPIHT-based coding of the shape and texture of arbitrarily shaped visual objects. IEEE Transactions on Circuits and Systems for Video Technology, 16(10): 1196-1208. https://doi.org/10.1109/TCSVT.2006.882388   [Google Scholar]
  19. Mehrotra A, Srikanth R, and Ramakrishnan AG (2004). A new coding scheme for 2-D and 3-D MR images using shape adaptive integer wavelet transform. In the International Conference on Intelligent Sensing and Information Processing Proceedings, IEEE, Chennai, India: 67-72. https://doi.org/10.1109/ICISIP.2004.1287626   [Google Scholar]
  20. Said A and Pearlman WA (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3): 243-250. https://doi.org/10.1109/76.499834   [Google Scholar]
  21. Salomon D (2004). Data compression: The complete reference. 3rd Edition, Springer, Berlin, Germany.   [Google Scholar]
  22. Shapiro JM (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41(12): 3445-3462. https://doi.org/10.1109/78.258085   [Google Scholar]
  23. Thomas S, Krishna A, Govind S, and Sahu AK (2023). A novel image compression method using wavelet coefficients and Huffman coding. Journal of Engineering Research. https://doi.org/10.1016/j.jer.2023.08.015   [Google Scholar]
  24. Tian J and Wells RO (1996). A lossy image codec based on index coding. In the Proceedings of Data Compression Conference - DCC '96, IEEE, Snowbird, USA: 456-463 https://doi.org/10.1109/DCC.1996.488388   [Google Scholar]
  25. Tian J and Wells RO (1998). Embedded image coding using wavelet difference reduction. In: Topiwala PN (Ed.), Wavelet image and video compression, 540: 289-301. Springer Science and Business Media, Boston, USA. https://doi.org/10.1007/0-306-47043-8_17   [Google Scholar]
  26. Vetterli M and Kovacevic J (1995). Wavelets and subband coding. Prentice-Hall, Englewood Cliffs, USA.   [Google Scholar]
  27. Walker JS (2000). Lossy image codec based on adaptively scanned wavelet difference reduction. Optical Engineering, 39(7): 1891-1897. https://doi.org/10.1117/1.602573   [Google Scholar]
  28. Wang Z, Bovik AC, Sheikh HR, and Simoncelli EP (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4): 600-612. https://doi.org/10.1109/TIP.2003.819861   [Google Scholar] PMid:15376593
  29. Xu P and Zhu S (2005). A new method for arbitrary shape ROI coding based on ISA-DWT. In the 2005 International Conference on Control and Automation, IEEE, Budapest, Hungary, 2: 1018-1021. https://doi.org/10.1109/ICCA.2005.1528271   [Google Scholar]
  30. Yuan Y and Mandal MK (2004). Embedded color image coding using context-modeled wavelet difference reduction. In the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE, Montreal, Canada, 3: 3-61. https://doi.org/10.1109/ICASSP.2004.1326481   [Google Scholar]
  31. Yuan Y and Mandal MK (2005). Novel embedded image coding algorithms based on wavelet difference reduction. IEE Proceedings-Vision, Image and Signal Processing, 152(1): 9-19. https://doi.org/10.1049/ip-vis:20051183   [Google Scholar]