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The wavelet difference reduction (WDR) method, a variant of run-length 
coding, finds its significance in data transmission applications. Over time, 
numerous enhanced iterations of WDR methods have emerged. Notably, the 
Adaptive Scalable WDR method exhibits superior coding gains, as evidenced 
by the peak signal-to-noise ratio (PSNR) and structural similarity index 
metric (SSIM), when compared to its predecessors. This paper conducts an 
exhaustive examination, encompassing both coding performance and time 
complexity, of various WDR methods vis-à-vis the conventional image 
compression algorithm SPIHT. Furthermore, it delves into the performance 
assessment of diverse coding techniques in the realm of encoding arbitrary-
shaped objects. The analysis underscores that modified WDR variants 
demonstrate remarkable prowess in compression, rendering them 
invaluable for rapid transmission in bandwidth-constrained networks. To 
substantiate these findings, coding results (measured in terms of PSNR) are 
derived from the application of these algorithms to standard test images, 
MRI images, and video still images. The results reveal coding gains ranging 
from 0.5 dB to 1 dB for regular resolution images and a substantial 2 dB to 12 
dB for scalable resolution scenarios, in comparison to traditional coding 
approaches. Consequently, this analysis underscores the convenience and 
superiority of modified WDR methods, not only for still images but also for 
encoding and transmitting arbitrary-shaped objects. 
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1. Introduction 

*Image coding algorithms have an important role 
in multimedia image transmission scenarios. Among 
them, wavelet-based image coding algorithms 
(Thomas et al., 2023; Khandelwal and Sharma, 2023; 
Bovik, 2005; Garg and Kumar, 2022; Vetterli and 
Kovacevic, 1995) are the most popular. To achieve 
cost-effective transmission (Danyali and Mertins, 
2004), the coding algorithms are focused on the 
region of interest area (ROI) (Salomon, 2004; 
Manpreet and Wasson, 2015) based concepts. The 
ROI part of images may be considered as arbitrary 
shapes (Caguazzo et al., 2005) that are more general 
than rectangular frames. The coding of these objects 
become an important issue in multimedia 
communications.  
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Arbitrary-shaped objects are identified by the 
process of segmentation applied to an image 
considering different characteristics. Adaptive 
coding schemes are applied to these objects and 
separately encoded to increase the compression 
performance. These approaches are different from 
coding schemes such as JPEG (Christopoulos et al., 
2000) with cosine transformation and JPEG2000 
coding standards (Christopoulos et al. 2000) with 
wavelet transformation. The other approach has 
been developed to decompose arbitrary-shaped 
objects which uses FIR wavelet filter and it can be 
either in bi-orthogonal or orthogonal form. The 
approach proceeds by decomposing the individual 1-
D image segments inside the object. First, the row of 
the object is considered, and then the same process 
is repeated on each column. Moreover, this approach 
(Li and Li, 2000; Xu and Zhu, 2005) maintains the 
overall number of pixels inside the objects and the 
overall number of wavelet coefficients inside the 
transformed domain are equal. 

The video coding standard MPEG-4 has been 
implemented by using shape-adaptive discrete 
wavelet transform with zero tree coding algorithms 
(Martin et al., 2006; Mehrotra et al., 2004). The 
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coding scheme which is used to code texture in video 
objects, generally avoids generated transform 
coefficients present in the outside of arbitrary-
shaped objects. Due to the limited performance of 
these algorithms, different coding algorithms were 
considered and analyzed. Among them, the run 
length coding method is the most famous. In this 
paper, the performance of a modified version of run 
length coding called the wavelet difference reduction 
method (WDR) method (Tian and Wells, 1998) is 
presented. A lot of modified versions of WDR 
methods were developed such as the adaptively 
scanned WDR (ASWDR) scheme (Walker, 2000) and 
context-modeling with the WDR (CMWDR) method 
(Yuan and Mandal, 2004; Yuan and Mandal, 2005; 
Law et al., 2004; Lamsrichan and 
Sanguankotchakorn, 2006; Berghorn, 2001a). These 
methods offer better coding performance in different 
compression ratios than the zero-tree coding 
methods such as the SPIHT method (Said and 
Pearlman, 1996).  

The paper presents a novel method called the 
adaptive scalable WDR method (Bindulal and 
Kaimal, 2007). This is a hybrid method that uses the 
layered approach of the WDR coding method with a 
selected region growing (WDR-SRG) approach 
(Bindulal and Kaimal, 2006) in association with 
shape-adaptive wavelet transform (Mehrotra et al., 
2004). This helps to competently code random 
molded objects to preserve adaptive scalability 
properties. The coding performance of the new 
versions of the WDR algorithm is compared to 
traditional methods in terms of distortion metrics 
like PSNR values and structural similarity index 
(SSIM) metric (Wang et al, 2004). The calculated 
values in PSNR and SSIM show that the coding 
performance of scalable WDR schemes is much 
better than the traditional coding methods like 
SPIHT (Said and Pearlman,1996) and its scalable 
version (Martin et al, 2006). Complexity analysis of 
different WDR methods is also performed and 
compared with spatial orientation tree-based coding 
techniques like SPIHT. Obtained time complexity 
shows that different WDR methods based on run 
length coding have less time required than that of 
the SPIHT method. Moreover, it is better in the 
situation of high-speed networks with limited 
bandwidths (Marinov et al., 2005, Manpreet et al., 
2015).  

2. Shape-adaptive discrete wavelet transform 

The shape-adaptive discrete wavelet transform is 
a modified method used to generate transform 
coefficients (Li and Li, 2000; Mehrotra et al., 2004) 
of arbitrary-length image segments. The arbitrary-
shaped image segments are identified using 
subsampling methods and applied wavelet 
transform. The transform can use odd symmetric or 
even symmetric bi-orthogonal wavelet filters. Here, 
the odd symmetric bi-orthogonal wavelet filters 
were used which have much better rate-distortion 
performance than even symmetric filters.  

2.1. 2D shape-adaptive DWT 

The discrete wavelet transform with sub-
sampling method is applied on the random shaped 
regions. The approach called shape-adaptive 
transform is progressed through the following steps: 

 
 The first row of pixels inside the identified shape 

information is considered for transformation. One-
dimensional wavelet transform is applied on this 
line of segment. The transformed coefficients are 
placed into the low pass band and the high pass 
band of corresponding rows. 

 The same operation moves forward through the 
section of successive pixels in each row 
downwards and then is applied to the respective 
columns of the low-pass and high-pass objects. 

 Similar transformation is done on the low-pass 
object to get different heights of wavelet subbands. 

 
Thus, the two-dimensional transformation of 

random span objects (Fig. 1) produces a 
multiresolution pyramid form of objects which 
effectively preserves the spatial correlation 
properties. 

 

LL1 HL1

LH1 HH1

HL2

LH2 HH2

 
Fig. 1: Subband structure of arbitrary length object in 

wavelet domain 

3. Complexity analysis of WDR methods 

Visual image coding is most important in the 
current image transmission scenario. The digital 
data can be coded using a simple method called run 
length coding (Berghorn, 2001b). The coding 
procedure digitally represents the run between the 
neighboring pixels of a given image that have similar 
properties.  

Modified run length coding is called index coding 
(Tian and Wells, 1996) and it is used in different 
coding methods. Among them, the WDR method 
(Tian and Wells, 1998) is a significant one. Here, the 
run length coding is modified as a differential coding 
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procedure to generate bit streams. Here, the coding 
is based on the calculation of run between the 
significant coefficients identified using threshold 
value checking concepts. Thus, the method acts as an 
embedded image coder. The run length coding uses a 
linear data structure whereas the pyramidal 
structure-based coding scheme like EZW (Shapiro, 
1993) and SPIHT (Said and Pearlman, 1996) uses a 
non-linear data structure. The time complexity for 
searching an element in a data set arranged in a 
nonlinear fashion which has n number of elements, 
is O(nlogn). But, for a linearly arranged data set, it is 
O(n). The upper edge in the time estimation value is 
considered in the WDR method. Because the way of 
selection of significant coefficients using linear data 
structures took less time than that of non-linear data 
structures. WDR method is simple as compared to 
SPIHT and has no more computational complexity. 
Because the WDR method maps the 2D image 
coefficients into 1D scanning order. Thus, it avoids 
complex searching processes as compared to the 
hierarchical tree-based SPIHT algorithm. Bit-plane 
image encoding similar to SPIHT is also performed in 
WDR methods. Positions of significant coefficients 
are arranged using (Kamata et al., 1996) a 
predefined scanning process. A difference reduction 
method is used to digitally encode the distance 
between the significant positions. After analyzing the 
performance of WDR methods, it is concluded that 
the method has improved identifiable and 
quantitative results during the encoding of images 
which have both intra-scale correlation and inter-
scale correlation amongst subbands. 

3.1. Complexity analysis of SPHIT algorithm 

Identified significant coefficients are arranged in 
different sets and list in the spatial orientation tree-
based SPIHT algorithm (Said and Pearlman, 1996), 
and the method is called set partitioning. The time 
required to process the ordered lists is compared to 
O(n) for the respective list. Moreover, SPIHT uses the 
concept of the pyramidal structure of coefficients as 
sets. Hence, the time complexity for processing and 
checking the significance of these sets is 
proportional to O(logn). Because the SPIHT uses a 
binary search tree algorithm to traverse this 
pyramidal structure of coefficients. This process 
progresses in a recursive manner and increases the 
time considering the height of the tree. 

After analyzing the processing time, the 
complexity is generally represented as C*O (nlogn). 
Here, ‘n’ represents the number of wavelet 
coefficients and C represents the constant for any 
other operations related to the above. Hence, it is 
concluded that the overall complexity of the SPIHT 
method is O(nlogn). Any other operations are 
negligible here.  

3.2. Estimation of time complexity in WDR 

A linear data structure-based WDR method 
maintains a set used to store the index positions of 

wavelet coefficients. The significance of coefficients 
is checked by a linear search algorithm and stores 
the amount of run between these coefficients in a 
linear fashion. So, the time complexity is O(n), where 
n is the space of data. 

Total time expenditure is calculated as follows: 
 
Time =  ∑ 𝑁𝑖  ×( O (n-i) )𝑇

𝑖=0 )                    (1) 
 

where, T is the estimated iteration count. That is, the 
overall cost is calculated as follows: 
 
Time = C× O (n).                     (2) 

 
where, C is a constant. The time for bit-plane 
representation and coding is not considered here. 
According to the complexity estimation, the results 
show that the WDR method is (Bindulal and Kaimal, 
2009) one faster method than tree-based coding 
methods. 

3.3. Complexity analysis of modified versions of 
WDR methods 

The modified version WDR method called 
adaptive scanned WDR also uses the linear probing 
algorithm (Walker, 2000; Yuan and Mandal, 2005). 
But, during the process, one level of tree searching 
corresponding to each significant coefficient is also 
done to identify more significant coefficients. So, the 
cost function is O (nlogn). Assume that the index list 
consists of K1 number significant elements. Then, for 
each parent significant element K1, there must be a 
present M number of child elements at the next level 
of pyramidal structure. For processing each parent 
significant element, the estimated time will be as 
follows: 
 
𝐾1 × 𝑂(𝑙𝑜𝑔 𝑀).                     (3) 
 

Assume that, there will be N number of elements. 
The significant element K is identified in each level L 
and represented as Ki where i varies from 1 to(𝑁/𝐾𝐿). 
The time count is estimated as follows: 
 
𝐾 × ∑ (𝑁/𝐾𝑖)𝐿

𝑖=1 × 𝑂(𝑙𝑜𝑔( 𝑀))                    (4) 

 
where, M is 𝑀 << 𝑁 
 
Time =𝑁 × 𝑂(𝑙𝑜𝑔( 𝑀)).                    (5) 
Time = 𝑂(𝑛 𝑙𝑜𝑔( 𝑀))                    (6) 
 

Thus, we can prove that 𝑙𝑜𝑔( 𝑀) << 𝑙𝑜𝑔( 𝑛). 
Here, M is the quantity of child elements and 𝑛 is the 
overall quantity of elements. Thus, as per the 
estimated total complexity, it is concluded that 
𝑂(𝑛 𝑙𝑜𝑔( 𝑀)) << 𝑂(𝑛 𝑙𝑜𝑔( 𝑛)) compared to SPIHT. 
All other operations above are neglected here. One 
another modified version called context-modeled 
WDR considers the combination of parent-child 
relation with neighborhood property. Due to the 
increase in child coefficients, even if it increases the 
time complexity, it is better than that of the SPIHT 
method.  



T. S. Bindulal/International Journal of Advanced and Applied Sciences, 10(10) 2023, Pages: 229-238 

232 
 

3.4. Time-saving of scalable WDR methods  

Let P is the number of child coefficients collected 
on each level L and N is the whole quantity of 
elements. The estimated time will be as follows: 
 
Time =  N×O (log (N / L))                    (7) 
 

where, 𝑃 = (N / L))     
 
Time = N×(O (log (𝑁)  -  (log (𝐿)))                    (8)  
Time = O (n×log (𝑛)   - O (n×log (𝐿)))                  (9) 
 

It is concluded that improved versions of WDR 
methods like ASWDR (Walker, 2000), CMWDR (Yuan 
and Mandal, 2005), and a novel version of layered 
WDR called scalable WDR (Bindulal and Kaimal, 
2009) have better performance in terms of time 
complexity estimated. This may be at least O 
(n log L) where n will be the size of data and L will be 
the depth of identified pyramidal structure. Hence, it 
is proved that both the basic WDR method and its 
modified versions are superior to the non-linear data 
structure-based coding algorithms. 

4. Layered WDR method for arbitrary-shaped 
visual objects 

The layered structure of the WDR (Bindulal and 
Kaimal, 2007) method called scalable WDR is applied 
to pre-processed visual objects considered the 
region of interest area. The simulations are done on 
the objects identified as the region of interest area 
extracted using the shape mask. The lossy or lossless 
encoding process is done considering the nature of 
images. According to these properties, an 
appropriate wavelet transform is applied. 

The encoding process (Fig. 2) is progressed in 
each bit plane. The significant information is 

evaluated using test function 𝜎(𝑤𝑖𝑗 , 𝑡𝑛) at bit plane n. 

The sign info is projected by means of 𝑆𝑖𝑔𝑛(𝑤𝑖𝑗). 

Function 𝑚𝑎𝑠𝑘(𝑖, 𝑗) to check the positions of wavelet 
coefficients and whether it is an exclusive object area 
or not.  

 

SWDR Encoding Layered Bit Stream

SA-DWT

Pre-Processing

Image

Shape Mask

SWDR Decoding

Shape Mask

SA-DWT

Pre-Processing

Generated Image
 

Fig. 2: Shape-adaptive object coding using scalable WDR 
method 

 
Experiments are performed on sample test 

images like MRI medical images (Fig. 3) and video 
visual images like announcer (Fig. 4). The 
representation of arbitrary-shaped objects of the 
sample test image announcer in the transform 
domain shows the multiresolution pyramid form of 
objects (Fig. 5) which effectively preserve the spatial 
correlation properties. 

 

   
(a) (b) (c) 

Fig. 3: (a) Test image - MRI medical image (b) Object mask for object extraction (c) Extracted object 
 

   
(a) (b) (c) 

Fig. 4: Test image - Announcer (a) Video image (b) Object mask for object extraction (c) Extracted object 
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Fig. 5: Representation of one level arbitrary-shaped object in transform domain of test image announcer 

 

4.1. Adaptive scalable WDR method 

The adaptive scalable WDR (SWDR) is compared 
with traditional methods like SPIHT and also with its 
scalable version. The new method adopts an 
adaptive scan path technique with a region-growing 
procedure which increases the coding efficiency. The 
algorithm produces the bit streams and can be used 
to generate different resolution images as per the 
user's needs. 

Adaptive scalable properties are maintained in 
the WDR method through multiple resolution-
dependent lists. Different data structures are used 
and listed below: 

 
 RGC - Collection of coefficients in a region  
 SNS - Collection of significant coefficients with 

neighborhood property. 
 SPS - Collection of significant coefficients with 

parent-child property  
 LIC - Collection of insignificant coefficients 
 SCS - Collection of significant coefficients 
 TSC - Collection of significant coefficients arranged 

for intermediate use. 
 
The collections of coefficients are arranged as a 

set of {RGCL, SNSL, SPSL, LICL} for respective 
subband group 𝜆𝐿 , where L is the depth of spatial 
resolution. The transform coefficients in the subband 
level L are processed and arranged as 

 
𝜆𝐿= {LL(L-1), LH(L), HL(L), HH(L)}. 

 
The algorithm Adaptive Scalable WDR (Fig. 6) can 

produce a bit stream in a reordered manner which 
supports multiple resolution properties at any 
chosen bit rate. 

The algorithm was restructured as a layered 
model to produce flexible bit streams. For that, 
different sets, symbols, and functions were used. The 
significance test is done using a function 𝜎(𝑤𝑖𝑗 , 𝑡𝑛) at 

bit level plane n. The function 𝑆𝑖𝑔𝑛(𝑤𝑖𝑗) is used to 

check the sign of significant coefficients. The 
encoding process is based on a masking function 
𝑚𝑎𝑠𝑘(𝑖, 𝑗) to check the presence of wavelet 
coefficients inside the object area. 

Using a recognized scan path, the significant 
coefficients are collected. The function 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑤𝑖𝑗 , 𝑡𝑛) is used for collecting clustering 

coefficients with neighboring property in connection 
with the substantial coefficient wij and the 

𝑐ℎ𝑖𝑙𝑑(𝑤𝑖𝑗 , 𝑡𝑛) for child coefficients of substantial 

coefficient wij. 
The symbols, sets, and functions used in the 

algorithm are listed below. 

4.1.1. Notations and functions 

 (𝑖, 𝑗)= index position of coefficients. 
 𝑤𝑖𝑗= coefficient at pixel location (𝑖, 𝑗) 

 𝑛    =  ⌊𝑙𝑜𝑔2 (𝑚𝑎𝑥
(𝑖,𝑗)∈𝐼

|𝑤𝑖𝑗|)⌋, represents the 

depth of bit planes. 
 𝑡𝑛= Threshold value at bit level plane n 
 (𝑚, 𝑛) = index position obtained from (𝑖, 𝑗) 
 Lmax= Level of spatial resolution scalability 

generated from the bit stream. 
 i.e., (1<= Lmax <=N+1), where N is the level of 

decomposition 

 𝜆𝐿 = {
𝐿𝐿𝐿−1

{𝐻𝐿𝐿 , 𝐿𝐻𝐿 , 𝐻𝐻𝐿}
 

:
:
 

𝑖𝑓 𝐿 = 𝑁 + 1
1 ≤ 𝐿 ≤ 𝑁

, collective 

set of subbands at L 

4.1.2. Significance checking functions 

 𝜎(𝑤𝑖𝑗 , 𝑡𝑛) = {
1 –  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑑𝑎𝑡𝑎

0 –  𝑖𝑛𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑑𝑎𝑡𝑎
:
:

|𝑤𝑖𝑗| ≥ 𝑡𝑛

|𝑤𝑖𝑗| < 𝑡𝑛

 

 𝑆𝑖𝑔𝑛(𝑤𝑖𝑗)    =    {
+
−

   
:  𝑤𝑖𝑗 ≥ 0

:  𝑤𝑖𝑗 < 0
 

 𝑀𝑎𝑠𝑘(𝑖, 𝑗)={
1     𝑖𝑓(𝑖, 𝑗)𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎𝑟𝑒𝑎

0   𝑖𝑓(𝑖, 𝑗)𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎𝑟𝑒𝑎
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Start

T = Threshold

Maximum Level of Resolution

 L = Lmax

If  (T > 1 )

?

Stop

If (L > 1)

?

T=T/2

Adaptive SWDR encoding of 

resolution level, L

Send Header Information

Update Resolution Level

L = L - 1
N

N Y

Y

 
Fig. 6: Adaptive salable WDR method with layered structure 

 

4.1.3. Neighborhood functions 

 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑤𝑖𝑗 , 𝑡𝑛) = {(𝑚, 𝑛)} , when 
1. (𝑖 − 1) ≤ 𝑚 ≤ (𝑖 + 1), (𝑗 − 1) ≤ 𝑛 ≤ (𝑗 + 1) 
2.  (𝑚, 𝑛) ∈ 𝜆𝐿𝑎𝑛𝑑(𝑖, 𝑗) ∈ 𝜆𝐿 

 𝑐ℎ𝑖𝑙𝑑(𝑤𝑖𝑗 , 𝑡𝑛) = {(𝑚, 𝑛)}  , when 

1. (𝑚, 𝑛) ∈ {
𝑎𝑛𝑑(2𝑖, 2𝑗), (2𝑖, 2𝑗 + 1)

𝑎𝑛𝑑(2𝑖 + 1,2𝑗), (2𝑖 + 1,2𝑗 + 1)
} 

2. (𝑚, 𝑛) ∈ 𝜆𝐿−1𝑎𝑛𝑑(𝑖, 𝑗) ∈ 𝜆𝐿 

4.1.4. Encoding procedure 

Step 1. Initialization 

 𝐿𝑆𝐶𝐿 = 𝜑 , 𝑇𝑆𝐶𝐿 = 𝜑 ∀𝐿 ,1 ≤ 𝐿 ≤ 𝐿𝑚𝑎𝑥 

 𝐿𝐼𝐶𝐿 = {
𝜑 ,  ∀𝐿 ,1 ≤ 𝐿 ≤ 𝐿𝑚𝑎𝑥

𝑅𝐺𝐶𝐿 = 𝜑, 𝑆𝑁𝑆𝐿 = 𝜑, 𝑆𝑃𝑆𝐿 = 𝜑
} 

 𝑛    =  ⌊𝑙𝑜𝑔2 (𝑚𝑎𝑥
(𝑖,𝑗)∈𝐼

|𝑤𝑖𝑗|)⌋ 

 𝑡𝑛−1 = 2𝑛+1 
 𝑡𝑛 = 𝑡𝑛−1 2⁄  
 L=Lmax; 

Step 2. Sorting pass 

If mask (i, j) = 1{  

If LIC𝐿(𝜎(𝑤𝑖𝑗 , 𝑡𝑛−1) = 0){ 

{If LI𝐶𝐿(𝜎(𝑤𝑖𝑗 , 𝑡𝑛) = 1) 

{coding (𝑤𝑖𝑗 ,L);}}} 

If mask (i, j) = 1{ 
If (𝜆𝐿 ≠ 𝜑){ 

{If (𝜎(𝑤𝑖𝑗 , 𝑡𝑛−1) = 0) { 

If (𝜎(𝑤𝑖𝑗 , 𝑡𝑛) =1){ 

coding (𝑤𝑖𝑗 , L);  

𝑅𝐺𝐶𝐿 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑤𝑖𝑗 , 𝑡𝑛); 

Do { 
If (𝑅𝐺𝐶𝐿 ≠ 𝜑){ 

If (𝑅𝐺𝐶𝐿(𝜎(𝑤𝑖𝑗 , 𝑡𝑛−1)) = 0){ 

If(𝑅𝐺𝐶𝐿(𝜎(𝑤𝑖𝑗 , 𝑡𝑛)) =1) { 

coding (𝑤𝑖𝑗 , L); 

𝑅𝐺𝐶𝐿 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑤𝑖𝑗 , 𝑡𝑛)}}} 

 } while (End (RGEL)!=True) ;}}}} 
Function coding (𝑤𝑖𝑗 , L) 

{ 
Generate Binary (run) between significant coefficients and 
send without leading MSB ‘1’ with sign information of 𝑤𝑖𝑗 . 

Add 𝑤𝑖𝑗 into TSCL. 

} 

Step 3. Index updating pass 

If 𝑇𝑆𝐶𝐿 ≠ 𝜑 { 

𝑆𝑁𝑆𝐿 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑤𝑖𝑗 , 𝑡𝑛) ; ∀(𝑖, 𝑗) ∈ 𝑇𝑆𝐶𝐿  

𝑆𝑃𝑆𝐿−1 = 𝑐ℎ𝑖𝑙𝑑(𝑤𝑖𝑗 , 𝑡𝑛) ;  ∀(𝑖, 𝑗) ∈ 𝑇𝑆𝐶𝐿} 

LICL=RGEL+SNSL + SPSL; 

Step 4. Refinement Pass 

If 𝑆𝐶S𝐿 ≠ 𝜑 { If (SCS𝐿(𝜎(𝑤ij, 𝑡𝑛−1) = 1)) 

{Add nth MSB of SCS𝐿(𝑤ij).}} 

SCSL=SCSL+TSCL.; 
TSCL=∅; 

Step 5. Scalability updation 

Send Scalability depth information; 
If (L > 1){ 
L=L-1;  
Go to step 2.} 
Else 
L=Lmax; 

Step 6. Threshold update 

If (tn >1){ 
𝑡𝑛−1 = 𝑡𝑛   
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𝑡𝑛 = 𝑡𝑛/2; 
Go to step 2.} 
 

The proposed algorithm generated four symbols 
{+, -, 1, 0} and these are represented using 2 bits 
such as 11 for +, 10 for -, 01 for 1, and 00 for 0. The 
novel scheme follows this method and avoids 
arithmetic coding. 

5. Simulation results 

Analysis of the various WDR methods is 
performed using a predefined scan path named 
Hilbert Scan (Kamata et al. 1996). The modified 
version of the WDR method called WDR with 
Selected Region Growing (WDR-SRG) (Bindulal and 
Kaimal, 2006) is compared with the traditional 
coding method SPIHT. The quality of images at any 
bit rate is calculated as the peak signal-to-noise ratio 
(PSNR). It is defined as, 
 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑚𝑎𝑥2

𝑀𝑆𝐸
)  𝑑𝐵                  (10) 

 

where, MSE is the mean squared error obtained by 
comparing the original and the recreated image; max 
is the extreme value of a pixel inside the image. 
Simulations are done on standard test image Barbara 
and the results (Table 1) are well compared (Fig. 7). 
The analysis of generated symbols by various WDR 

methods is also done (Fig. 8) compared with other 
methods. 

The Scalable WDR (Bindulal and Kaimal, 2007) is 
a hybrid method that is a combination of WDR-SRG 
(Bindulal and Kaimal, 2006) with scalability 
properties. The experimental results are compared 
with original SPIHT (Said and Pearlman, 1996) and 
scalable SPIHT (Martin et al, 2006). The simulations 
are done on test image Barbara, medical images with 
resolution size 512×512, and video objects like 
announcer with resolution size 480×512, etc. The 
sixth level of transformation is done using bi-
orthogonal 9/7 wavelet filters for announcer objects 
for lossy coding. For MRI image coding, use 5/3 tap 
wavelet filters. Each transformation uses symmetric 
extension at the image boundary. Then, the encoder 
sets to encode the coefficients from the maximum 
level of bitplane to the lowest level bitplane to 
support spatial scalability. 

 
Table 1: PSNR Values of test image Barbara using Hilbert 

scene 

Methods 
Normal wavelet decomposition 

1 bpp 0.5 bpp 0.25 bpp 0.125 bpp 
WDR-SRG 37.39 32.16 28.29 25.39 
CMWDR 37.29 32.09 28.22 25.16 
ASWDR 36.84 31.70 27.65 25.05 

WDR 36.51 31.53 27.48 25.05 
SPIHT 36.80 31.63 27.64 24.89 

Values in dB 

 

 
Fig. 7: Coding gain in PSNR values – test image Barbara 

 

The performance comparison is done in terms of 
PSNR values. Considering the test image Barbara, the 
coding gain for full-resolution reconstruction is 
between 0.2 dB and 0.5 dB at any bpp rate (Table 2). 
At the lowest level of resolution, gain is from 2 dB to 
12 dB. The values are compared with normal SPIHT 
and scalable version (Table 3). The coding gain for 
test image MRI varies from 0.3 dB to 5 dB for various 
bpp rates (Table 4 and Table 5) at different 
resolution levels. 

The video still objects in YUV format are used in 
the simulation and the luminance plane (Y) is used to 
calculate the similarity index. The comparison shows 
that the visual quality of reconstructed images is 
improved and obtained coding gain is from 0.7 dB to 
1.4 dB for desired bpp for full resolution (Table 6) 
and from 3 dB to 12 dB for half resolution (Table 7).  

The structural similarity index (SSIM) metric 
(Zhou et al, 2004) is another distortion rate 
estimation method. The SSIM of test image Barbara 
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and the MRI image shows (Table 8) that the 
proposed coding method is a novel one that has 
much better performance and can be one 

considerable method in all senses. The structural 
similarity index (SSIM) metric is defined in the 
following equations. 

 

 
Fig. 8: Analysis of symbols produced by various WDR methods using scan path Hilbert curve – test image Barbara 

 

Table 2: PSNR values – test image Barbara (512×512) 
image 

Image Bit rate (bpp) 
Full resolution (512×512) 

SPIHT SWDR 

Barbara 

0.125 24.89 25.21 
0.25 27.64 28.20 
0.5 31.62 32.09 

0.75 34.50 34.92 
1 36.84 37.23 

Values in dB 

 
Table 3: PSNR values – test image Barbara (512×512) 

image 

Image 
Bit rate 
(bpp) 

Half resolution (256×256) 

SPIHT 
Scalable 
SPIHT 

SWDR 

Barbara 

0.125 28.56 30.11 30.30 
0.25 31.46 34.64 34.95 
0.5 36.02 41.39 41.82 

0.75 38.82 46.87 47.11 
1 41.68 51.57 51.69 

Values in dB 

 
Table 4: PSNR values – test image - MRI (512×512) image 

Coding scheme 
Full resolution 

0.125 bpp 0.25 bpp 0.5 bpp 1.0 bpp 
SPIHT - - - - 

Scalable SPIHT 31.21 35.84 40.35 47.11 
SWDR 31.92 36.43 40.93 47.45 

Values in dB 

 
Table 5: PSNR values – test image - MRI (512×512) Image 

Coding scheme 
Half resolution (256×256) 

0.0625 
bpp 

0.125 
bpp 

0.25 
bpp 

0.5 
bpp 

SPIHT 27.55 31.21 36.50 43.60 
Scalable SPIHT 27.75 31.50 37.00 47.70 

SWDR 28.55 32.02 38.01 48.79 
Values in dB 

 

Table 6: PSNR values – test image - announcer (480×512) 
image 

Coding scheme 
Full resolution 

0.125 bpp 0.25 bpp 0.5 bpp 1.0 bpp 
SPIHT - - - - 

S-SPIHT 36.49 40.77 45.46 51.51 
SWDR 37.83 41.66 46.25 52.60 

Values in dB 

 
Table 7: PSNR values – test image - announcer (480×512) 

image 

Coding scheme 
Half resolution (240×256) 

0.0625 bpp 0.125 bpp 0.25 bpp 0.5 bpp 
SPIHT 33.60 38.11 43.85 50.51 

S-SPIHT 34.20 39.72 46.45 58.80 
SWDR 36.61 41.50 48.55 62.65 

Values in dB 
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𝑁
𝑖=1                    (12) 

𝜎𝑥
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2

                  (13) 

𝜎𝑦
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1
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                  (14) 
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1
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∑ (𝑥𝑖 − �̄�)𝑁

𝑖=1 (𝑦𝑖 − �̄�)                 (15) 

 

where, 𝜇𝑥 is mean of x, 𝜇𝑦 is mean of y, 𝜎2
𝑥 is 

variance of x, 𝜎2
𝑦 is the variance of y and 𝜎𝑥𝑦 is the 

covariance of x and y. The Structural Similarity 
(SSIM) index between signals x and y is calculated 
using the following equations: 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
                                  (16) 
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where, C1 and C2 are constants, i.e., C1= (K1L) 2 and 
C2= (K2L) 2 where L is the dynamic range of the pixel 
values, and K1 and K2 are two constants. 

The overall quality value called the average of the 
quality map or the Mean SSIM (MSSIM) index is 
defined as, 
 

𝑀𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
1

𝑀
∑ 𝑆𝑆𝐼𝑀(𝑥𝑗 , 𝑦𝑗)𝑀

𝑗=1                 (17)  

 
where, X is the reference image and Y is the distorted 
image. xj and yj are the image contents at the jth local 
window and M is the number of local windows of the 
image. 

 
Table 8: Structural similarity index values – test image - 

Barbara (512×512) image and MRI image (512×512) 

Test image Bit rate (bpp) 
Full resolution (512×512) 

SPIHT SWDR 

Barbara 

0.125 0.83037 0.84586 
0.25 0.89146 0.90146 
0.5 0.95027 0.95382 

0.75 0.97289 0.97563 
1 0.98475 0.98538 

MRI 

0.125 0.91672 0.91946 
0.25 0.95834 0.96079 
0.5 0.98360 0.98604 

0.75 0.99225 0.99297 
1 0.99605 0.99648 

6. Conclusion 

Analysis and complexity estimation of various 
wavelet different reduction methods are discussed in 
this paper. The paper also describes the performance 
of wavelet based scalable encoder called scalable 
WDR method. After analyzing the methods, 
identified point is that the hierarchical coding 
schemes is much more time consuming which uses 
hierarchical tree structure. Moreover, even if it is 
better to encode small-size images, but need more 
time to encode large-size images. So, for avoiding 
tree-based data structure, an alternative method 
which is WDR is considered. In addition, the simpler 
RLC method is used here. Thus, it can be used in 
networks with different capabilities to achieve the 
fastest data transmission. 

In this paper, a number of modified versions of 
different WDR methods have been analyzed. The 
coding performance of these algorithms is much 
better in terms of PSNR values than that of 
traditional methods such as SPIHT, even without 
using arithmetic coding or Huffman coding. The 
coding gain in PSNR value is from 0.2 dB to 12 dB in 
different situations. The time complexity analysis of 
different WDR methods is also done. After analysis, it 
is concluded that the projected method is sound and 
has better coding speed with 10% gain than that of 
traditional SPIHT method. 

A hybrid method using video object coding with 
shape-adaptive coding is presented here. At any 
point of bit rate, the novel method has better 
performance which has least time complexity than 
that of pyramidal structure coding technique. The 
method also supported the scalability features that 
have interesting prospects for frequent visual data 

communication over different networks. This facility 
will fulfill the initial goal of resolving network 
heterogeneity. This feature will provide the facility 
to each receiver to select the data packets of any 
number of data layers. i.e., the decision can be made 
by considering the visualization capacity to limit 
their bandwidth usage. It is concluded that the novel 
method is able to encode high-quality arbitrarily 
shaped visual object streams in real-time with an 
average compression ratio of 10 times than any 
other coding method, with high visual quality. 
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