International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 10, Issue 10 (October 2023), Pages: 166-173

----------------------------------------------

 Original Research Paper

Fuzzy nonsingular fast terminal sliding mode controller for a robotic system

 Author(s): 

 Lafi Alnufaie *

 Affiliation(s):

 Department of Electrical Engineering, Engineering College, Shaqra University, Shaqra, Saudi Arabia

 Full text

  Full Text - PDF

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-2453-2637

 Digital Object Identifier (DOI)

 https://doi.org/10.21833/ijaas.2023.10.019

 Abstract

This study introduces an innovative control strategy utilizing a nonsingular fast sliding mode technique tailored for robotic systems. The core of this approach lies in the development of a type-2 fuzzy logic-based nominal model, meticulously designed to accurately approximate the dynamics of the real system while adeptly handling the variability in system parameters. This method marks a departure from conventional approaches by inferring the switch signal for type-2 adaptive fuzzy systems, a critical step in achieving superior tracking performance without the necessity for extensive knowledge of the system's upper bounds in uncertainties and external disturbances. The efficacy of the proposed control law is rigorously validated through a series of simulations, encompassing a variety of initial conditions and reference signals, thereby demonstrating its robust performance capabilities.

 © 2023 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords

 Robotic system control, Nonsingular fast sliding mode, Type-2 fuzzy logic, Adaptive fuzzy systems, Control system simulation

 Article history

 Received 25 May 2023, Received in revised form 16 September 2023, Accepted 6 October 2023

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Alnufaie L (2023). Fuzzy nonsingular fast terminal sliding mode controller for a robotic system. International Journal of Advanced and Applied Sciences, 10(10): 166-173

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 

 Tables

 No Table

----------------------------------------------   

 References (17)

  1. Boukattaya M, Mezghani N, and Damak T (2018). Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems. ISA Transactions, 77: 1-19. https://doi.org/10.1016/j.isatra.2018.04.007   [Google Scholar] PMid:29699696
  2. Feng Y, Yu X, and Man Z (2002). Non-singular terminal sliding mode control of rigid manipulators. Automatica, 38(12): 2159-2167. https://doi.org/10.1016/S0005-1098(02)00147-4   [Google Scholar]
  3. Hamzaoui A, Essounbouli N, and Zaytoon J (2004). Fuzzy sliding mode control with a fuzzy switching function for non-linear uncertain multi-input multi-output systems. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 218(4): 287-297. https://doi.org/10.1177/095965180421800404   [Google Scholar]
  4. Jayaraman B, Gaurav K, Giri DK, and Ghosh AK (2022). Nonsingular fast terminal sliding mode flight control of a subscale aircraft. In the American Institute of Aeronautics and Astronautics SciTech 2022 Forum, San Diego, USA. https://doi.org/10.2514/6.2022-0751   [Google Scholar]
  5. Karnik NN, Mendel JM, and Liang Q (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7(6): 643-658. https://doi.org/10.1109/91.811231   [Google Scholar]
  6. Li P, Ma J, and Zheng Z (2016). Robust adaptive sliding mode control for uncertain nonlinear MIMO system with guaranteed steady state tracking error bounds. Journal of the Franklin Institute, 353(2): 303-321. https://doi.org/10.1016/j.jfranklin.2015.11.005   [Google Scholar]
  7. Liang X, Wang H, and Zhang Y (2022). Adaptive nonsingular terminal sliding mode control for rehabilitation robots. Computers and Electrical Engineering, 99: 107718. https://doi.org/10.1016/j.compeleceng.2022.107718   [Google Scholar]
  8. Manceur M, Essounbouli N, and Hamzaoui A (2011). Second-order sliding fuzzy interval type-2 control for an uncertain system with real application. IEEE Transactions on Fuzzy Systems, 20(2): 262-275. https://doi.org/10.1109/TFUZZ.2011.2172948   [Google Scholar]
  9. Manceur M, Menhour L, Essounbouli N, and Hamzaoui A (2013). MIMO sliding fuzzy type-2 control with manipulating approaching phase. In 10th IEEE International Conference on Networking, Sensing and Control, IEEE, Evry, France: 479-485. https://doi.org/10.1109/ICNSC.2013.6548786   [Google Scholar]
  10. Truong TN, Vo AT, and Kang HJ (2021). A backstepping global fast terminal sliding mode control for trajectory tracking control of industrial robotic manipulators. IEEE Access, 9: 31921-31931. https://doi.org/10.1109/ACCESS.2021.3060115   [Google Scholar]
  11. Van M, Ge SS, and Ren H (2016). Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. IEEE Transactions on Cybernetics, 47(7): 1681-1693. https://doi.org/10.1109/TCYB.2016.2555307   [Google Scholar] PMid:28113571
  12. Venkataraman S and Gulati S (1993). Control of nonlinear systems using terminal sliding modes. The Journal of Dynamic Systems, Measurement, and Control, 115(3): 554-560. https://doi.org/10.1115/1.2899138   [Google Scholar]
  13. Vo AT and Kang HJ (2019). A chattering-free, adaptive, robust tracking control scheme for nonlinear systems with uncertain dynamics. IEEE Access, 7: 10457-10466. https://doi.org/10.1109/ACCESS.2019.2891763   [Google Scholar]
  14. Wang H, Man Z, Kong H, Zhao Y, Yu M, Cao Z, and Do MT (2016a). Design and implementation of adaptive terminal sliding-mode control on a steer by wire equipped road vehicle. IEEE Transactions on Industrial Electronics, 63(9): 5774-5785. https://doi.org/10.1109/TIE.2016.2573239   [Google Scholar]
  15. Wang Y, Gu L, Xu Y, and Cao X (2016b). Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode. IEEE Transactions on Industrial Electronics, 63(10): 6194-6204. https://doi.org/10.1109/TIE.2016.2569454   [Google Scholar]
  16. Xu Z, Huang W, Li Z, Hu L, and Lu P (2021). Nonlinear nonsingular fast terminal sliding mode control using deep deterministic policy gradient. Applied Sciences, 11(10): 4685. https://doi.org/10.3390/app11104685   [Google Scholar]
  17. Zhai J and Xu G (2020). A novel non-singular terminal sliding mode trajectory tracking control for robotic manipulators. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(1): 391-395. https://doi.org/10.1109/TCSII.2020.2999937   [Google Scholar]