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This study introduces an innovative control strategy utilizing a nonsingular 
fast sliding mode technique tailored for robotic systems. The core of this 
approach lies in the development of a type-2 fuzzy logic-based nominal 
model, meticulously designed to accurately approximate the dynamics of the 
real system while adeptly handling the variability in system parameters. This 
method marks a departure from conventional approaches by inferring the 
switch signal for type-2 adaptive fuzzy systems, a critical step in achieving 
superior tracking performance without the necessity for extensive 
knowledge of the system's upper bounds in uncertainties and external 
disturbances. The efficacy of the proposed control law is rigorously validated 
through a series of simulations, encompassing a variety of initial conditions 
and reference signals, thereby demonstrating its robust performance 
capabilities. 
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1. Introduction 

*Widely used in many applications, sliding mode 
control can be considered a very popular approach 
to ensure good tracking performance against 
external disturbances (Liang et al., 2022). Despite its 
simple design procedure and good tracking 
performance, sliding mode control has two major 
disadvantages. This first one is the chattering 
phenomena introduced by using the signum function 
in the control signal. The second disadvantage lies in 
its time convergence, which cannot be imposed. 
Several improvements have been proposed in the 
literature to reduce the chattering phenomena. In Vo 
and Kang (2019), the switching signal is smoothed 
by using a low-pass filter. An adaptive fuzzy system 
has been used by Hamzaoui et al. (2004) to 
substitute the switching control and, hence, to 
eliminate the chattering phenomenon. However, this 
improvement needs a tradeoff between the 
smoothness of the switching signal and tracking 
performance. Second-order sliding mode control has 
also presented a good solution to chattering but the 
design procedure is complex and requires a good 
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knowledge of the studied system (Manceur et al., 
2011).  

Recently, terminal sliding mode control has been 
developed, where a nonlinear surface is used 
(Venkataraman and Gulati, 1993; Wang et al., 
2016a). However, these kinds of controllers suffer 
from singularity problems due to the presence of 
terms with negative fractional powers (Boukattaya 
et al., 2018). This problem can be resolved by using a 
nonsingular terminal sliding mode controller 
(Boukattaya et al., 2018; Venkataraman and Gulati, 
1993; Vo and Kang, 2019). Nevertheless, this 
improvement was obtained at the expense of the 
convergence time which becomes slower. 
Nonsingular fast terminal sliding mode controller 
has been developed to overcome singularity and to 
obtain fast convergence time (Jayaraman et al., 2022; 
Van et al., 2016; Wang et al., 2016b; Xu et al., 2021; 
Zhai et al., 2021). Thus, in this paper, we propose a 
nonsingular fast terminal sliding mode controller for 
a robotic system that guarantees finite-time 
convergence, fast speed when the states are far from 
the origin, avoidance of singularity, and without 
chattering. The main contribution of authors: (i) a 
type-2 fuzzy nominal model is elaborated to 
overcome the problem of knowledge of system 
parameters. Using type-2 fuzzy logic allows us to 
ensure a robust model against uncertainties. (ii) the 
switching control signal terms are calculated 
adaptive type-2 fuzzy systems used to avoid a well-
knowledge of the upper bounds of both uncertainties 
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and external disturbances, which are in general 
unknown.  

The remainder of this paper is organized as 
follows. Section 2 is dedicated to introducing type-2 
fuzzy systems. In Section 3, the problem statement of 
controlling a robotic system is treated. Section 4 is 
dedicated to the controller design and stability 
analysis. Simulation and results are given in Section 
5 to show the effectiveness of the proposed 
approach. Finally, the conclusion is provided. 

2. Interval type-2 fuzzy logic system 

Fuzzy Logic Systems are known as universal 
approximators and have several applications in 

control design and identification. A type-1 fuzzy 
system consists of four major parts: fuzzifier, rule 
base, inference engine, and defuzzifier. A T2FLS is 
very similar to a T1FLS, the major difference being 
that the defuzzifier block of a type-1 fuzzy system is 
replaced by the output processing block in a type-2 
fuzzy system, which consists of type-reduction 
followed by defuzzification as presented in Fig. 1 
(Karnik et al., 1999; Li et al., 2016; Manceur et al., 
2013). 

In an interval type-2 fuzzy system, a triangular 
fuzzy set is defined by a lower and upper set as 
shown in Fig. 2. 

 

 
Fig. 1: Structure of a type-2 fuzzy logic system 

 

 
Fig. 2: Interval type-2 triangular fuzzy sets 

 

It is clear that the interval type-2 fuzzy set is in a 
region bounded by an upper membership function 
and a lower membership function denoted as �̅�𝐴(𝑥) 

and 𝜇𝐴  respectively and is named a foot of 

uncertainty (FOU) Assume that there are M rules in a 
type-2 fuzzy rule base, and each of them has the 
following form: 

 
𝑅𝑖: 𝐼𝐹 𝑥1 𝑖𝑠 �̃�1

𝑖  𝑎𝑛𝑑…𝑎𝑛𝑑 𝑥𝑛 𝑖𝑠 �̃�𝑛
𝑖  𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 [𝑤𝑙

𝑖  𝑤𝑟
𝑖]  

 
where, 𝑥𝑗  𝑗 = 1,2, … , 𝑛 and 𝑦 are the input and 

output variables of type-2 fuzzy system, respectively, 
the �̃�𝑗

𝑖  is the type-2 fuzzy sets of antecedent parts 

and [𝑤𝑙
𝑖  𝑤𝑟

𝑖] is the weighting interval set in the 

consequent part the operation of type-reduction is to 

give a type-1 set from a type-2 set. In the meantime, 
the firing strength Fi for the ith rule can be an interval 
type-2 set expressed as:  

 

𝐹𝑖 ≡ [𝑓𝑖  , 𝑓
𝑖
]  

 
where,  

 

{
𝑓𝑖 = 𝜇�̃�1𝑖(𝑥1) ∗ … ∗ 𝜇�̃�𝑛𝑖(𝑥𝑛) 

 𝑓
𝑖
= �̅��̃�1𝑖

(𝑥1) ∗ … ∗ �̅��̃�1𝑖
(𝑥𝑛)

.  

 
In this work, the center of set type-reduction 

method is used to simplify the notation. Therefore, 
the output can be expressed as:  

 

Fuzzifier

Inference Engine

Rule Base

Defuzzifier

Type reducer

Crisp

Input

Fuzzy

Input sets

Fuzzy

Output sets

Output

Crisp

Output

Type

Reduced set

          

Upper memebership function 

lower memebership function 

FOU

1
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𝑦𝑐𝑜𝑠(𝑥) = [𝑦𝑙 ; 𝑦𝑟]  

 
where, 𝑦𝑐𝑜𝑠(𝑥) is also an interval type-1 set 
determined by left and most points (𝑦𝑙  and 𝑦𝑟), can 

be derived from the consequent centroid set [𝑤𝑙
𝑖  𝑤𝑟

𝑖] 

(either 𝑤𝑖  or �̅�𝑖) and the firing strength 𝑓𝑖 ∈ 𝐹𝑖 ≡

[𝑓 𝑖 , 𝑓
𝑖
]. The interval set [𝑤𝑙

𝑖  𝑤𝑟
𝑖] (𝑖 = 1,… ,𝑀) should 

be computed or set first before the computation of 
𝑦𝑐𝑜𝑠(𝑥). Hence, left most point 𝑦𝑙  and right most 
point 𝑦𝑟 can be expressed as; 
 

{
 
 

 
 𝑦𝑙 =

∑ 𝑓𝑀
𝑖=1

𝑖
𝑤𝑙
𝑖

∑ 𝑓𝑀
𝑖=1

𝑖  

 𝑦𝑟 =
∑ 𝑓

𝑖
𝑤𝑟
𝑖𝑀

𝑖=1

∑ 𝑓
𝑖𝑀

𝑖=1

                      (1) 

 
Using the center of set type reduction method to 

compute 𝑦𝑙  and 𝑦𝑟 the defuzzified crisp output from 
an interval type-2 fuzzy logic system can be obtained 
according to the following equation: 
 

𝑦(𝑥) =
𝑦𝑙+𝑦𝑟

2
                      (2) 

 
Which can be rewritten in the following vectorial 

form: 
 

𝑦(𝑥) = 𝛹𝑇(𝑥). 𝑤                      (3) 
 

where, ΨT(x) represents the regressive vector and w 
the consequent vector containing the conclusion 
values of the fuzzy rules.  

3. Problem statement 

Let us consider the dynamic equation of n degree-
of-freedom robotic manipulators as follows:  
 
𝑀(𝑞)�̈� +  (𝑞, �̇�)�̇� + 𝐺(𝑞, �̇�) = 𝛤(𝑡) + 𝛤𝑒𝑥𝑡(𝑡)                      (4) 
 

where, 𝑞, �̇� and �̈� ∈ ℝ𝑛 are the vectors of joint 
position, joint velocity, and joint acceleration, 
respectively. 𝑀(𝑞) ∈ ℝ𝑛×𝑛 is a symmetric and 
positive definite inertia matrix,  (𝑞, �̇�) ∈ ℝ𝑛×𝑛 is the 
matrix of centrifugal and Coriolis forces, 𝐺(𝑞) ∈ ℝ𝑛 
is the vector of gravitational forces, Γ(𝑡) ∈ ℝ𝑛 is the 
vector of input joint torque and Γext(𝑡) ∈ ℝ

𝑛 is the 
vector of unknown external disturbances. 

For practical applications, it is impossible to 
know the exact dynamic model of the robotic 
manipulators. Hence, the above dynamic quantities 
can be expressed as:  
 
𝑀(𝑞) = 𝑀0(𝑞) + ∆𝑀(𝑞)

 (𝑞, �̇�) =  0(𝑞, �̇�) + ∆ (𝑞, �̇�)

𝐺(𝑞) = 𝐺0(𝑞) + ∆𝐺(𝑞)

                    (5) 

 

where, M0(q),  0(𝑞, �̇�), 𝐺0(𝑞) are the nominal values 
of M(q),  (𝑞, �̇�), G(q) respectively and ∆M(q), 
∆ (𝑞, �̇�), ∆𝐺(𝑞) are the uncertain parts of M(q), 
 (𝑞, �̇�), G(q) respectively.  

Using Eq. 5, the dynamic model of the robotic 
manipulators can be expressed as: 

𝑀0(𝑞)�̈� +  0(𝑞, �̇�)�̇� + 𝐺0(𝑞, �̇�) = 𝛤(𝑡) + 𝛿(𝑞, �̇�, �̈� )           (6) 
 

where, 
 
𝛿(𝑞, �̇�, �̈� ) = 𝛤𝑒𝑥𝑡(𝑡) − ∆𝑀(𝑞)�̈� − ∆ (𝑞, �̇�)�̇� − ∆𝐺(𝑞).  
 

Let's define the tracking error 𝑒 = 𝑞 − 𝑞𝑑  and its 
time derivative �̇� = �̇� − �̇�𝑑 where, 𝑞𝑑  the desired 
trajectory. Then the error dynamic of the robotic 
manipulators with the uncertainties and 
disturbances can be written as: 
 
�̈� = 𝑓(𝑒, �̇�) + 𝑔(𝑒, �̇�)𝛤(𝑡) + 𝐷(𝑒, �̇�)                   (7) 
 

where, 
 
(e, �̇�) = −𝑀0

−1(𝑞)[C0(q, q̇)q̇ + G0(q, q̇)] − q̈d , 𝑔(e, �̇�) =
𝑀0
−1(𝑞)   

 

and 
 
𝐷(e, �̇�) = 𝑀0

−1(𝑞) δ(𝑞, �̇�, �̈� ).  
 

As given in [14], the upper bound of lumped 
uncertainty can be expressed as: 
 
|𝐷(𝑒, �̇�)| ≤ 𝑎0 + 𝑎1|𝑞| + 𝑎2|�̇�|

2                    (8) 
 

where, 𝑏0, 𝑏1 and 𝑏2 are positive scalars.  
The next task is to develop a robust controller 

based on nonsingular fast terminal sliding mode 
control allowing tracking objectives (Feng et al., 
2002; Van et al., 2016; Wang et al., 2016a). 

4. Controller design  

To design our controller, let's consider the 
following nonsingular terminal sliding surface: 

 
𝑆(𝑡) = 𝑒 + 𝑘1|𝑒|

𝛼𝑠𝑖𝑔𝑛(𝑒) + 𝑘2|�̇�|
𝛽  𝑠𝑖𝑔𝑛(�̇�)                         (9) 

 
where, k1 and k2 are positive constants, 1 < β < 2 
and 𝛼 > 𝛽.  

The structure of this surface allows us to attain 
fast convergence of the tracking error to zero. 
Indeed, if the position of the initial value is far from 
the desired one, then the term 𝑘1|𝑒|

𝛼𝑠𝑖𝑔𝑛(𝑒) will be 
dominant, which leads to fast convergence. In the 
case where the system is near the desired trajectory, 
the term 𝑘2|�̇�|

𝛽  𝑠𝑖𝑔𝑛(�̇�) must ensure a finite time 
convergence.  

The time derivative of the sliding surface can be 
written as: 
 

�̇�(𝑡) = �̇� + 𝛼. 𝑘1|𝑒|
𝛼−1 �̇� + 𝛽. 𝑘2|�̇�|

𝛽−1. �̈�                 (10) 
 

Our control law will be composed of two terms. 
The first one, named equivalent control 𝛤𝑒(𝑡), is 
dedicated to maintaining the system on the sliding 
surface. In the second term, 𝛤𝑠(𝑡) called switching 
signal, must force the system to converge to the 
sliding surface. Then, to design the equivalent 
control law 𝛤𝑒(𝑡), we consider that the system is on 

the surface (𝑆(𝑡) = 0) and remains on (�̇�(𝑡) = 0). In 
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this case, the system is considered insensitive to 
uncertainties and external disturbances (Truong et 
al., 2021; Vo and Kang, 2019).  

Using Eq. 7, Eq. 10 can be rewritten as: 
 

�̇�(𝑡) = �̇� + 𝛼. 𝑘1|𝑒|
𝛼−1 �̇� + 𝛽. 𝑘2|�̇�|

𝛽−1. [𝑓(𝑒, �̇�) +
𝑔(𝑒, �̇�)𝛤𝑒(𝑡)]                    (11) 
 

Then the expression of equivalent control law can 
be expressed as: 
 

𝛤𝑒(𝑡) = −𝑔
−1(𝑒, �̇�). [𝑓(𝑒, �̇�) + [𝛽. 𝑘2]

−1 |�̇�|2−𝛽(1 +

𝛼. 𝑘1|𝑒|
𝛼−1) 𝑠𝑖𝑔𝑛(�̇�)]                   (12) 

Note that, we used the fact that �̇� = |�̇�|. 𝑠𝑖𝑔𝑛(�̇�) to 
write Eq. 9 in a compact form.  

Our next task is to determine the expression of 
the switching signal 𝛤𝑠(𝑡) allowing to force the 
system to reach the sliding surface in the presence of 
uncertainties and external disturbances.  

In this case, Eq. 10 becomes: 
 
�̇�(𝑡) = �̇� + 𝛼. 𝑘1|𝑒|

𝛼−1 �̇� + 𝛽. 𝑘2|�̇�|
𝛽−1. [𝑓(𝑒, �̇�) +

𝑔(𝑒, �̇�)𝛤(𝑡) + 𝐷(𝑒, �̇�)]                   (13) 
 

 

Using Eq. 12, we can rewrite Eq. 10 as: 

  
 
�̇�(𝑡) = �̇� + 𝛼. 𝑘1|𝑒|

𝛼−1 �̇� + 𝛽. 𝑘2|�̇�|
𝛽−1. [𝑓(𝑒, �̇�) + 𝑔(𝑒, �̇�)𝛤𝑒(𝑡)] + 𝛽. 𝑘2|�̇�|

𝛽−1. [𝑔(𝑒, �̇�)𝛤𝑠(𝑡) + 𝐷(𝑒, �̇�)]                   (14) 

  
 

According to the definition of the equivalent 
control, Eq. 14 can be simplified to: 

 
�̇�(𝑡) = 𝛽. 𝑘2|�̇�|

𝛽−1. [𝑔(𝑒, �̇�)𝛤𝑠(𝑡) + 𝐷(𝑒, �̇�)].              (14a) 

 
To deduce the expression of 𝛤𝑠(𝑡) allowing the 

switching condition, we consider the following 
Lyapunov function: 

 

𝑉(𝑡) =
1

2
𝑆2(𝑡).                    (15) 

 

Differentiating 𝑉(𝑡) concerning time and using 
Eq. 15 lead to: 

 
�̇�(𝑡) = 𝑆(𝑡). 𝛽. 𝑘2|�̇�|

𝛽−1. [𝑔(𝑒, �̇�)𝛤𝑠(𝑡) + 𝐷(𝑒, �̇�)].             (16) 

 
Choosing 𝛤s(𝑡) as: 

 
𝛤𝑠(𝑡) = −𝑔

−1(𝑒, �̇�)[𝑘01. 𝑆(𝑡) + (𝑘02 + 𝑎0 + 𝑎1|𝑞| +
𝑎2|�̇�|

2). 𝑠𝑖𝑔𝑛(𝑆(𝑡))]                    (17) 
 

where, k01 and k02 are two positive scalars. The time 
derivative of the Lyapunov function becomes: 

  
 

 
�̇�(𝑡) = 𝑆(𝑡). 𝛽. 𝑘2|�̇�|

𝛽−1. [𝑔(𝑒, �̇�)𝛤𝑠(𝑡) + 𝐷(𝑒, �̇�)]

= 𝛽. 𝑘2|�̇�|
𝛽−1. [−𝑘01. 𝑆

2(𝑡) − (𝑘02 + 𝑎0 + 𝑎1|𝑞| + 𝑎2|�̇�|
2). |𝑆(𝑡)| + 𝐷(𝑒, �̇�)]

                     (18) 

  
 

Using the assumption in Eq. 8, we obtain the 
following inequality: 
 

�̇�(𝑡) ≤ 𝛽. 𝑘2|�̇�|
𝛽−1. [−𝑘01 . 𝑆

2(𝑡) − 𝑘02 . |𝑆(𝑡)|] ≤ 0          (19) 
 

Based on the Lyapunov theorem, the system 
converges asymptotically to the sliding surface and 
remains on.  

To prove convergence in finite time, let us take up 
inequality in Eq. 20: 
 

�̇�(𝑡) ≤ −𝛽. 𝑘01 . 𝑘2|�̇�|
𝛽−1. 𝑆2(𝑡) − 𝛽. 𝑘02. 𝑘2|�̇�|

𝛽−1. |𝑆(𝑡)|  
                    (20) 

�̇�(𝑡) =
𝑑𝑉(𝑡)

𝑑𝑡
≤ −2.𝛽. 𝑘01. 𝑘2|�̇�|

𝛽−1⏟          
𝛽1

. 𝑉(𝑡) −

√2𝛽. 𝑘02 . 𝑘2|�̇�|
𝛽−1⏟            

𝛽2

. 𝑉
1

2(𝑡).                                    (21) 

 

Then we can obtain: 
 

𝑑𝑡 ≤
−𝑑𝑉(𝑡)

𝛽1.𝑉(𝑡)+𝛽2.𝑉
1
2(𝑡)

= −2.
𝑑𝑉

1
2(𝑡)

𝛽1.𝑉
1
2(𝑡)+𝛽2

.                  (22) 

 
If we consider that the system converges to 0 at 

𝑡 = 𝑡𝑟 implies that: 
 

∫ 𝑑𝑡
𝑡𝑟
0

≤ ∫
−2.𝑑𝑉

1
2(𝑡)

𝛽1.𝑉
1
2(𝑡)+𝛽2

= [−
2

𝛽1
 𝑛 (𝛽1𝑉

1

2(𝑡) + 𝛽2)]
𝑉(𝑡𝑟)

𝑉(0)
𝑉(0)

𝑉(𝑡𝑟)

  

                    (23) 
hence, 

 

𝑡𝑟 ≤
2

𝛽1
 𝑛 (

𝛽1𝑉
1
2(0)+𝛽2

𝛽2
)                   (24) 

 

Consequently, the control law Γ(𝑡) = Γ𝑒(𝑡) +
Γ𝑠(𝑡), whose terms are defined by Eqs. 12 and 18, 
guarantee the asymptotic stability of the closed-loop 
system and the convergence of the tracking error in 
a finite time.  

Nevertheless, it is very difficult if not possible to 
know the exact values of the scalars 𝑎0, 𝑎1 and 𝑎2. To 
overcome this problem, we propose to approximate 
them by three adaptive type-2 fuzzy systems �̂�0 =
Ψ𝑇(𝑒, �̇�). 𝑤0, �̂�1 = Ψ

𝑇(𝑒, �̇�). 𝑤1 and �̂�2 = Ψ
𝑇(𝑒, �̇�). 𝑤2 . 

According to the universal approximation theorem, 
there exists an optimal value of type-2 fuzzy systems 
we can write: 
 
𝑎0 = 𝛹

𝑇(𝑒, �̇�). 𝑤0
∗

𝑎1 = 𝛹
𝑇(𝑒, �̇�). 𝑤1

∗

𝑎2 = 𝛹
𝑇(𝑒, �̇�). 𝑤2

∗

                    (25) 
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where, 𝑤0
∗, 𝑤1

∗ and 𝑤2
∗ represent the optimal values of 

𝑤0, 𝑤1 and 𝑤2 respectively. Consequently, the 
control laws become: 

  

𝛤(𝑡) = 𝛤𝑒(𝑡) + 𝛤𝑠(𝑡)

𝛤𝑒(𝑡) = −𝑔
−1(𝑒, �̇�). [𝑓(𝑒, �̇�) + [𝛽. 𝑘2]

−1 |�̇�|2−𝛽(1 + 𝛼. 𝑘1|𝑒|
𝛼−1) 𝑠𝑖𝑔𝑛(�̇�)]

𝛤𝑠(𝑡) = −𝑔
−1(𝑒, �̇�)[𝑘01. 𝑆(𝑡) + (𝑘02 + �̂�0 + �̂�1|𝑞| + �̂�2|�̇�|

2). 𝑠𝑖𝑔𝑛(𝑆(𝑡))]

                      (26) 

  

 

These modified control laws allow to ensure 
convergence to the reference trajectory in a finite 
time.  

To deduce the adaptation laws of the three 
adaptive fuzzy systems, we consider the new 
Lyapunov function: 

 

𝑉(𝑡) =
1

2
𝑆2(𝑡) + 𝛽. 𝑘2 (

1

2𝛾0
(𝑤0 − 𝑤0

∗)2 +
1

2𝛾1
(𝑤1 − 𝑤1

∗)2 +

1

2𝛾2
(𝑤2 −𝑤2

∗)2).                    (27) 

 

Using the control laws in Eq. 27 and the following 
adaptation laws:  

 
�̇�0 = 𝛾0𝛹

𝑇(𝑒, �̇�). |𝑆(𝑡)|. |�̇�|𝛽−1

�̇�1 = 𝛾1𝛹
𝑇(𝑒, �̇�). |𝑆(𝑡)|. |�̇�|𝛽−1|𝑒|

�̇�2 = 𝛾0𝛹
𝑇(𝑒, �̇�). |𝑆(𝑡)|. |�̇�|𝛽

.                  (28) 

 

And following the same mathematical 
development used previously, the time derivative of 
the Lyapunov function in Eq. 28 becomes: 
 

�̇�(𝑡) ≤ 𝛽. 𝑘2|�̇�|
𝛽−1. [−𝑘01 . 𝑆

2(𝑡) − 𝑘02 . |𝑆(𝑡)|] ≤ 0          (29) 
 

Thus, the convergence of the closed-loop system 
to the reference trajectory in a finite time is 
guaranteed.  

5. Simulation and results 

To show the performances of the performances of 
the proposed approach, we consider a one-link 
robot, shown in Fig. 3, whose dynamics equation is 
given by: 
 
𝑚 2�̈� + 𝑚𝑔 𝑐𝑜𝑠(𝑞)�̇� + 𝑚𝑔 𝑠𝑖𝑛(𝑞) = Γ + 𝛤𝑒𝑥𝑡(𝑡)  
 

with  
 
𝑚1 = 1𝐾𝑔;  1 = 1𝑚; 𝑔 = 9.8𝑚𝑠

−2   
 

To construct the type-2 fuzzy nominal model, we 
consider that the position 𝑞 is constrained within 

[−
𝜋

2
;
𝜋

2
], which leads to 3 fuzzy rules. Each one of 

them gives the relation between the equilibrium 
point and the corresponding local model. Then, each 
rule uses a type2 fuzzy set in the antecedent part to 
describe the equilibrium point and the consequent 
part in the corresponding local model. Using the 
product as an interference engine, the method of 
center set for the reduction type and center of 
gravity for defuzzification, the output fuzzy system 
will be giving the type-2 fuzzy nominal model.  

Fig. 4 gives the angular position and velocity for 
two initial positions. The convergence to zero in a 
finite time is well shown in Fig. 5. To illustrate the 
efficiency of the proposed approach we have used a 
more complex trajectory 𝑞𝑞 = 0.5cos ((𝑡) +

0.5sin (2𝑡). Fig. 6 gives the angular position and 
velocity for two initial values. These results show 
also good tracking performances and convergence to 
the reference trajectory in a finite time. 
Furthermore, the control signal is given in Fig. 7 the 
elimination of the chattering phenomenon and the 
smooth control signal. We can conclude that the 
proposed approach ensures high tracking precision, 
fast response, singularity avoidance, and strong 
robustness to external disturbances and modeling 
uncertainties. 

6. Conclusion 

A novel robust control law based on a 
nonsingular fast sliding mode technique for a robotic 
system is developed. the main contribution lies in 
exploiting the agility of type-2 fuzzy logic to 
overcome the limits of classical control. Indeed, we 
elaborate firstly a type-2 fuzzy nominal model 
allowing us to approximate at best the real system 
with precise knowledge. Secondly, the developed 
switching signal allowing fast convergence to the 
origin uses an adaptive type-2 fuzzy system to avoid 
the knowledge of the upper bound of both 
uncertainties and external disturbances. The 
adaptation laws of these parameters are deduced 
from the stability analysis. Several simulation results 
have been given to show the performances of the 
proposed approach. Our next task is to apply this 
method in real-time on a robot with three degrees of 
freedom. 

 

 
Fig. 3: one link robot manipulator 

 

 

𝑞
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Fig. 4: Outputs of the system: (a) Angular position (b) Angular velocity 

 

 
Fig. 5: Error phase plane 

 

 
Fig. 6: Outputs of the system: (a) Angular position (b) Angular velocity 



Lafi Alnufaie/International Journal of Advanced and Applied Sciences, 10(10) 2023, Pages: 166-173 

172 
 

 
Fig. 7: Applied control signal 

 

List of symbols 

𝑞 Angular position of joint 
�̇� Angular velocity of joint 
�̈� Angular acceleration of joint 
𝑀(𝑞) Inertia matrix 
 (𝑞, �̇�)  Matrix of centrifugal and Coriolis forces 
𝐺(𝑞) Vector of gravitational forces 
Γ(𝑡) Vector of gravitational forces 
Γ𝑒𝑥𝑡(𝑡) Vector of unknown external disturbances 
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