International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 8 (August 2022), Pages: 144-151

----------------------------------------------

 Original Research Paper

 Equation of state of Krypton gas in the temperature-range 120-130 K

 Author(s): Amal F. Al-Maaitah *, Amer D. Al-Oqali

 Affiliation(s):

 Department of Physics, Mutah University, Mutah, Jordan

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-6561-1676

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.08.018

 Abstract:

This study aims to find out an equation of state for Krypton gas (Kr) in the temperature range 120–130 K and to calculate some of its thermodynamic properties. The virial equation of state for Krypton gas (Kr) is constructed using the quantum second virial coefficient (Bq). The Beth–Uhlenbeck formula is used to calculate the quantum second virial coefficient Bq in the temperature range 120–130 K at different number densities. The pressure-volume-temperature behavior of Kr gas is carefully investigated, from which the phase (gas-liquid) transition is predicted. Some of the thermodynamic properties; the internal energy, enthalpy, and Helmholtz free energy are calculated for a number density of 4×1025 atoms/m3 using the quantum second virial coefficient. Our results show that the deviation from ideality becomes most significant at low temperatures and increases with increasing number density. Our results for the quantum second virial coefficient are in good agreement with previous results.

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Krypton gas, Quantum second virial coefficient, Internal energy, Enthalpy, Compressibility

 Article History: Received 26 January 2022, Received in revised form 29 April 2022, Accepted 24 May 2022

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Al-Maaitah AF and Al-Oqali AD (2022). Equation of state of Krypton gas in the temperature-range 120-130 K. International Journal of Advanced and Applied Sciences, 9(8): 144-151

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 

 Tables

 Table 1 Table 2  

----------------------------------------------    

 References (27)

  1. Akour AN, Sandouqa AS, Joudeh BR, and Ghassib HB (2018). Equation of state of 20Ne gas in the temperature-range 27–36 K. Chinese Journal of Physics, 56(1): 411-422. https://doi.org/10.1016/j.cjph.2017.10.017   [Google Scholar]
  2. Al-Maaitah AF, Sandouqa AS, Joudeh BR, and Al-Obeidat OT (2019). The scattering and thermodynamic properties of ultracold 20Ne vapor. Chinese Journal of Physics, 62: 194-201. https://doi.org/10.1016/j.cjph.2019.06.015   [Google Scholar]
  3. Al-Maaitah IF (2018). Quantum Second virial coefficients for Krypton-86 gas. Applied Physics Research, 10(1): 1-6. https://doi.org/10.12988/aap.2018.71210   [Google Scholar]
  4. Al-Maaitah IF, Joudeh BR, Sandouqa AS, and Ghassib HB (2016). Scattering properties of argon gas in the temperature range 87.3-120 K. Acta Physica Polonica A, 129(6): 1131-1140. https://doi.org/10.12693/APhysPolA.129.1131   [Google Scholar]
  5. Al-Obeidat OT (2021). Second virial coefficient of CH4 vapor in 5 mK-10000 K Temperature range in quantum and classical regimes. Acta Physica Polonica A, 139(2): 102-108. https://doi.org/10.12693/APhysPolA.139.102   [Google Scholar]
  6. Benseddik C, Bouazza MT, and Bouledroua M (2014). Thermophysical properties of a Krypton gas. Chinese Journal of Physics, 52(3): 1002-1014.   [Google Scholar]
  7. Bishop RF, Ghassib HB, and Strayer MR (1976). Composite pairs and effective two-body scattering in a many-body medium. Physical Review A, 13(4): 1570-1582. https://doi.org/10.1103/PhysRevA.13.1570   [Google Scholar]
  8. Byrne MA, Jones MR, and Staveley LAK (1968). Second virial coefficients of Argon, Krypton and Methane and their binary mixtures at low temperatures. Transactions of the Faraday Society, 64: 1747-1756. https://doi.org/10.1039/tf9686401747   [Google Scholar]
  9. Dardi PS and Dahler JS (1992). Classical and quantal calculations of the dimerization constant and second virial coefficient for argon. Theoretica Chimica Acta, 82(1): 117-129. https://doi.org/10.1007/BF01113133   [Google Scholar]
  10. Feynman RP (1998). Statistical mechanics: A set of lectures. 1st Edition, CRC Press, Boca Raton, USA.   [Google Scholar]
  11. Garberoglio G, Jankowski P, Szalewicz K, and Harvey AH (2012). Second virial coefficients of H2 and its isotopologues from a six-dimensional potential. The Journal of Chemical Physics, 137(15): 154308. https://doi.org/10.1063/1.4757565   [Google Scholar] PMid:23083166
  12. Ghassib HB, Bishop RF, and Strayer MR (1976). A study of the Galitskii-Feynman T matrix for liquid 3He. Journal of Low Temperature Physics, 23(3): 393-410. https://doi.org/10.1007/BF00116928   [Google Scholar]
  13. Ghassib HB, Sandouqa AS, Joudeh BR, and Mosameh SM (2014). Predicting the borderline between the classical and quantum regimes in 4He gas from the second virial coefficient. Canadian Journal of Physics, 92(9): 997-1001. https://doi.org/10.1139/cjp-2013-0411   [Google Scholar]
  14. Joudeh BR, Sandouqa AS, Ghassib HB, and Al-Sugheir MK (2010). 3He-3He and 4He-4He cross sections in matter at low temperature. Journal of Low Temperature Physics, 161(3): 348-366. https://doi.org/10.1007/s10909-010-0211-6   [Google Scholar]
  15. Kan KC (1979). An equation of state and the gas-liquid-solid equilibrium in argon. Chinese Journal of Physics, 17(1): 32-43.   [Google Scholar]
  16. Koh SI (2003). Statistical mechanics of the gas–liquid condensation in the attractive Bose gas. Physica B: Condensed Matter, 329: 38-39. https://doi.org/10.1016/S0921-4526(02)01902-6   [Google Scholar]
  17. Mamedov BA and Somuncu E (2017). Accurate evaluation of the internal energy, free energy, entropy and enthalpy of non-polar molecules by using virial coefficients. Chinese Journal of Physics, 55(4): 1473-1488. https://doi.org/10.1016/j.cjph.2017.04.016   [Google Scholar]
  18. Mosameh SM, Sandouqa AS, Ghassib HB, and Joudeh BR (2014). Thermodynamic properties 4He gas in the temperature range 4.2–10 K. Journal of Low Temperature Physics, 175(3): 523-542. https://doi.org/10.1007/s10909-013-1079-z   [Google Scholar]
  19. Mozafari F and Zare SZ (2011). Thermodynamic properties for Argon. Journal of Physical Chemistry and Electrochemistry, 1(3): 139-143.   [Google Scholar]
  20. Nezbeda I and Smith WR (2004). On the calculation of the critical temperature from the second virial coefficient. Fluid Phase Equilibria, 216(1): 183-186. https://doi.org/10.1016/j.fluid.2003.11.006   [Google Scholar]
  21. Oh SK (2010). Extending the group contribution concept using Kihara potential to perfluorinated n-alkanes CnF2n+ 2 (n= 1–6) for estimating thermophysical properties. Fluid Phase Equilibria, 288(1-2): 87-95. https://doi.org/10.1016/j.fluid.2009.10.023   [Google Scholar]
  22. Sandouqa AS (2018). The quantum second virial coefficient as a predictor of formation of small spin-polarized tritium (T↓) clusters. Chemical Physics Letters, 703: 29-32. https://doi.org/10.1016/j.cplett.2018.05.010   [Google Scholar]
  23. Sandouqa AS, Joudeh BR, Al-Obeidat OT, Hawamdeh MM, and Ghassib HB (2020). A comprehensive study of the second virial coefficient of low-density 84krypton vapor in the temperature range 0.01–700 K. The European Physical Journal Plus, 135(2): 1-12. https://doi.org/10.1140/epjp/s13360-020-00168-3   [Google Scholar]
  24. Seguin V, Guignes H, and Lhuillier C (1987). Virial calculations for H↓ in two and three dimensions. Physical Review B, 36: 141-155. https://doi.org/10.1103/PhysRevB.36.141   [Google Scholar] PMid:9942034
  25. Sengers JMH, Klein M, and Gallagher JS (1971). Pressure-volume-temperature relationships of gases virial coefficients. Defense Technical Information Center, Fort Belvoir, USA.   [Google Scholar]
  26. Vliegenthart GA and Lekkerkerker HN (2000). Predicting the gas–liquid critical point from the second virial coefficient. The Journal of Chemical Physics, 112(12): 5364-5369. https://doi.org/10.1063/1.481106   [Google Scholar]
  27. Weir RD, Jones IW, Rowlinson JS, and Saville G (1967). Equation of state of gases at low temperatures; Part 1: Second virial coefficient of argon and krypton. Transactions of the Faraday Society, 63: 1320-1329. https://doi.org/10.1039/TF9676301320   [Google Scholar]