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This study aims to find out an equation of state for Krypton gas (Kr) in the 
temperature range 120–130 K and to calculate some of its thermodynamic 
properties. The virial equation of state for Krypton gas (Kr) is constructed 
using the quantum second virial coefficient (Bq). The Beth–Uhlenbeck 
formula is used to calculate the quantum second virial coefficient Bq in the 
temperature range 120–130 K at different number densities. The pressure-
volume-temperature behavior of Kr gas is carefully investigated, from which 
the phase (gas-liquid) transition is predicted. Some of the thermodynamic 
properties; the internal energy, enthalpy, and Helmholtz free energy are 
calculated for a number density of 4×1025 atoms/m3 using the quantum 
second virial coefficient. Our results show that the deviation from ideality 
becomes most significant at low temperatures and increases with increasing 
number density. Our results for the quantum second virial coefficient are in 
good agreement with previous results. 
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1. Introduction 

*Krypton (Kr) is a noble gas with the atomic 
number of 36 and has an electronic structure of a 
fully occupied d-shell. Its melting point is 115.78 K 
and has a boiling point of 119.735 K. There are no 
radioactive isotopes of krypton found in nature. Kr is 
one of the rarest gases in the Earth’s atmosphere. It 
is extracted by distillation of air that has been cooled 
until it is a liquid. Because krypton is so rare (and 
thus expensive), it has limited use. The gas is 
injected into some incandescent light bulbs because 
it extends the life of the tungsten filament that makes 
those bulbs glow. It is also used in some flash lamps 
used for high-speed photography. Hence, the study 
of the thermodynamic properties of krypton gas is of 
scientific significance. 

The main goals of this study are to find out an 
equation of state for Kr gas and to calculate some of 
its thermodynamic properties in the temperature 
range 120–130 K at various densities using the 
Galitskii-Migdal Feynman (GMF) formalism (Ghassib 
et al., 1976; Bishop et al., 1976; Joudeh et al., 2010; 
Ghassib et al., 2014; Mosameh et al., 2014). This 
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formalism can be viewed as an independent-pair 
model ،dressed by a many-body medium. The main 
outcome of GMF formalism for the present purposes 
is the phase shifts for the input interatomic potential. 
It should be noted that our phase shifts depend on 
the temperature and density of the medium. These, 
in turn, are inserted into the Beth-Uhlenbeck 
formula to determine the quantum second virial 
coefficient Bq. The equation of state describing the 
pressure-volume-temperature (P-V-T) behavior of 
the system and other thermodynamic properties is 
then followed according to standard recipes. The 
equation of state of gases at low densities is an 
important source of information on intermolecular 
forces since the coefficients of the virial form of the 
equation of state are the physical properties that are 
linked most directly to the potential of these forces 
(Weir et al., 1967). 

The quantum second virial coefficient is of great 
interest in many industrial applications (Oh, 2010; 
Garberoglio et al., 2012). It is widely used in the 
determination of thermodynamic quantities (Al-
Maaitah et al., 2016; Akour et al., 2018; Al-Obeidat, 
2021). It determines the degree of ‘nonideality’ of 
the gaseous system. This coefficient is used to give a 
good approximation to the equation of the state of 
real gases. Also, it can act as a predictor of the 
possible formation of small clusters (Sandouqa, 
2018; Al-Maaitah et al., 2019). In some cases, it can 
even be invoked to predict the critical temperature 
(Vliegenthart and Lekkerkerker, 2000; Nezbeda and 
Smith, 2004).  
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As for previous studies in this field: An ab initio 
potential was used in computer simulations to study 
the thermophysical properties of krypton gas over a 
wide range of densities and temperatures (Dardi and 
Dahler, 1992). An apparatus of the Burnett type was 
built to measure accurately the second virial 
coefficients for gases at low temperatures (Weir et 
al., 1967). For Kr, the second virial coefficient B was 
measured in the T range 110–225 K, with absolute 
accuracies from 0.001 to 0.01 m3 kmol−1. The rapid 
fall of B at low T implied a deep well in the binary 
potential. Also, B, as well as the transport properties, 
for the dilute gas formed of monatomic Kr was 
calculated at low temperatures when the quantum 
effects are very important and for moderate and high 
temperatures using the Chapman-Enskog model 
(Benseddik et al., 2014). Furthermore, Al-Maaitah 
(2018) calculated the quantum second virial 
coefficient for krypton gas using ab initio potential, 
Barker et al. potential, and Morse potential. 
Agreement with experiments was good though not 
perfect. Bq for Kr was determined in the 
temperature-range 0.01–10 K in the zero-density 
limit using the HFD-B potential (Sandouqa et al., 
2020). The general behavior of Bq is the same as that 
of the HFD-B potential itself; there seems to be an 
almost one-to-one correspondence between the 
respective repulsive, attractive, and ‘minimum’ 
regions.  

The paper is organized as follows. The theoretical 
framework is outlined in Section 2. The results are 
presented and discussed in Section 3. They are 
displayed in figures and tables. The paper concludes 
with some closing remarks in Section 4. 

2. Theoretical framework 

2.1. Quantum second virial coefficient Bq 

The main GMF output is the many-body phase 
shifts, which are then used to compute the 
corresponding quantum second virial coefficient Bq 

and other thermodynamic quantities. The GMF 
integral equation for the T-matrix is solved by the 
matrix inversion technique (Ghassib et al., 1976; 
Bishop et al., 1976). This technique has been greatly 
improved over the years. The phase shifts are related 
to 𝐵𝑞  through the Beth–Uhlenbeck formula (Seguin 

et al., 1987). This is given by:  
 
𝐵𝑞(𝑇) = 𝐵𝑖𝑑𝑒𝑎𝑙 + 𝐵𝑏𝑜𝑢𝑛𝑑 + 𝐵𝑃ℎ𝑎𝑠𝑒                                           (1) 

 

here, 𝐵ideal  is the quantum ideal-gas term, which is 
important in the low-temperature region, but goes to 
zero with increasing temperature. It is given by: 
 

𝐵𝑖𝑑𝑒𝑎𝑙 = −
𝜆3

25 2⁄ = −
1

25 2⁄ (
2𝜋ℏ2

𝑚𝑘𝐵𝑇
)

3 2⁄

                                           (2) 

 

where, 𝜆 is the thermal de Broglie wavelength. The 
bound-state contribution 𝐵𝑏𝑜𝑢𝑛𝑑  is given by: 
 

𝐵𝑏𝑜𝑢𝑛𝑑 = −23 2⁄ 𝜆3 ∑ (𝑒−𝛽𝐸𝐵 − 1)𝐸𝐵
                                         (3) 

This term is very small and can be neglected. The 
last term, 𝐵Phase  represents the contribution of the 
scattering-state. It is given by: 
 

𝐵𝑝ℎ𝑎𝑠𝑒 = −
23 2⁄ 𝜆5

𝜋2  

× ∫ 𝑑𝑘 𝑘 ∑ (2𝑙 + 1)𝛿𝑙
𝐸∞

𝑙(𝑒𝑣𝑒𝑛)
∞

0
(𝑘)𝑒−𝛽𝐸(𝑘),                            (4) 

 

where, 𝛿𝑙
𝐸(𝑘) is the effective ℓ-partial phase shift 

corresponding to energy 𝐸(𝑘) = ℏ2𝑘2 2𝑚⁄ . 
In this paper, the ‘natural’ system of units is used, 

i.e.,  ℏ = k = m = 1. The conversion factor ℏ2 m⁄  for 
Kr gas is 0.5781 K.Å2. 

2.2. Interatomic potential 

The only input needed is the binary potential V(r) 
which has been chosen as the HFD-B. Its general 
form is given by (Aziz and Slaman,1986): 
 
𝑉(𝑟) = 휀𝑉∗(𝑥)                                                                               (5) 

𝑉∗(𝑥) = 𝐴𝑒𝑥𝑝(−𝛼𝑥 + 𝛽𝑥2) − {
𝐶6

𝑥6
+

𝐶8

𝑥8
+

𝐶10

𝑥10
} 𝐹(𝑥)            (6) 

𝐹(𝑥) = {
𝑒𝑥𝑝 − [{

𝐷

𝑥
− 1}

2
] ,        𝑥 < 𝐷

1,                                       𝑥 > 𝐷
                                     (7) 

 

where, 𝑥 ≡
𝑟

𝑟𝑚
; 𝑟𝑚 = 4.008Å; 𝐷 = 1.28;  𝐴 = 1.10146811 ×

105;  = 𝛼 = 9.39490495;  𝛽 =  −2.32607647; 𝐶6 =
1.08822526; 𝐶8 = 0.53911567 𝐶10  =   0.42174119; 
ε=210.2K.  

3. Results and discussions 

3.1. Second virial coefficient  

Our results for the quantum second virial 
coefficient in the T-range 120-130 K are summarized 
in Table 1 and Fig. 1 for the HFD-B potential. It is 
clear that Bq is negative for our whole T-range and it 
increases with increasing T (becoming less 
negative). A negative Bq means that the overall 
interaction is attractive. 

Bq(T) was a good pointer to show the effect of the 
interatomic potential on the thermodynamic 
properties, especially the pressure. For low T, the 
mean energies of the atoms in the gas are of the 
same order of magnitude as the depth of the 
potential well, resulting in an increase in the 
attractive forces between the interacting atoms; 
these spend most of their time in the attractive 
region of the potential. This results in a decrease in 
the gas pressure which leads to a negative Bq(T). For 
high T, the average energies of the atoms increase 
and become large in comparison to the maximum 
energy of attraction. Therefore, the predominant 
contribution to Bq(T) arises from the repulsive 
portion of the potential. This causes an increase in 
the gas pressure and, hence, Bq(T) becomes less 
negative (Al-Maaitah et al., 2016). Bq nearly does not 
change at low the number density n but starts to 
decrease as n increases. Clearly, Kr gas exhibits small 
quantum effects in the temperature range 
considered. 
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Table 1 displays a comparison of our results with 
experimental ones. Clearly, the GMF results are 

becoming closer to experimental results. 

 
Table 1: The quantum second virial coefficient Bq (cc/mol) as a function of the temperature T [K] at different number 

densities n [atoms/ m3], for HFD-B potential. Some previous experimental results are included for comparison purposes 

T[K] 
Bq(T)at 

n=4 × 1020 
Bq(T)at 

n=4 × 1022 
Bq(T)at 

n=4 × 1025 
Bq(T)at 

n=4 × 1027 
Bq(T)at 

n=4 × 1029 
B(T)exp. 

(Sengers et al., 1971) 
B(T)exp. 

(Byrne et al., 1968) 
120 -306.12 -306.90 -308.10 -311.76 -315.10 -307.80 -307.90 
122 -297.66 -299.32 -302.46 -308.34 -309.84 -298.61  
124 -291.30 -292.61 -294.85 -301.69 -303.89 -288.80 -287.50 
126 -285.43 -287.10 -290.70 -295.76 -296.83 -280.00  
128 -268.01 -273.62 -281.13 -290.58 -296.26 -271.60  
129 -263.13 -265.32 -274.50 -285.33 -290.77 -264.99 -265.40 
130 -259.21 -263.87 -265.24 -279.89 -286.91 -263.70  

 

 
Fig. 1: Bq [cc/mole] as a function of temperature T [K] for different number densities n [atoms/m3] 

 

3.2. Pressure-volume-temperature (P-V-T) 
behavior 

The ‘virial equation of state’ was usually written 
as (Feynman, 1998): 
 

𝑃

𝑛𝑘𝐵𝑇
= 1 + 𝑛𝐵𝑞                                                                               (8) 

 

The quantum second virial coefficient Bq can be 
fitted as a function of T. Its form is given as: 
 
𝐵𝑞 = 𝑎 + 𝑏𝑇 + 𝑐𝑇2 + 𝑑𝑇3 + 𝑒𝑇4                                             (9) 

 

where the fitting parameters calculated for 𝑛 = 4 ×
1025 atoms/m3 are: 𝑎 =  −437.82 𝑐𝑚3/𝑚𝑜𝑙, 𝑏 =
4.18 𝑐𝑚3/(𝑚𝑜𝑙 . 𝐾),𝑐 = −0.02 𝑐𝑚3/(𝑚𝑜𝑙 . 𝐾2), 𝑑 =
 5.123 × 10−5𝑐𝑚3/(𝑚𝑜𝑙 . 𝐾3), e=-3.66×10-8cm3/(mol 
K4). 

Fig. 2 shows Bq and its fitting equation at 𝑛 =
 4 × 1025atoms/m3. Clearly, the agreement is good 
in the present T-range. 

In Fig. 3, the P-T curve indicates that P increases 
with increasing T, n being held fixed. Fig. 4 shows 
that P reaches a maximum and then decreases with 
increasing n. This is because the interatomic 
repulsive forces cause P to increase rapidly from a to 
b; whereas the attractive forces cause P to decrease 

equally rapidly from b to c (gas-liquid transition) 
(Kan, 1979). 

Fig. 5 shows P as a function of V for two 
temperatures. One can see that if the system is 
compressed, V decreases until it reaches a critical 
volume Vc at a maximum pressure Pmax. If the volume 
is decreased a little below Vc by compression to a 
pressure a little above Pmax, this will lead to a 
collapse in the system and V and P decrease at the 
same time at a constant temperature. The system 
undergoes a gas-liquid phase transition at extremely 
low P and extremely low V (Koh, 2003). The critical 
physical quantities Vc and Pmax are listed in Table 2 
at two temperatures for n=0.4×1027atoms/m3. 

3.3. Compressibility, Z 

The Compressibility Factor Z, also known as 
the compression factor or the gas deviation factor, is 
a correction factor that describes the deviation of a 
real gas from ideal gas behavior. The compressibility 
factor is defined in thermodynamics as (Mosameh et 
al., 2014): 
 
𝑍 = 1 + 𝑛𝐵𝑞(𝑇)                                                                           (10) 

 

Fig. 6 shows a plot of Z as a function of n for 
different temperatures: 120𝐾, 124𝐾 and130 𝐾. The 
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value of 𝑍 goes to 1 at very low density where 𝑃~ 0, 
where all gases become ideal. As n increases, 𝑍 
becomes less than 1 because of predominantly 

attractive forces. The gas becomes more and more 
ideal with increasing 𝑇, as expected. 

 

 
Fig. 2: The calculated Bq [cm3/mol] values and their fitting equation versus temperature T [K] at n= 4 ×1025 atoms/m3 

 

 
Fig. 3: The pressure P [MPa] as a function of temperature T [K] at n= 4 ×1025 atoms/m3 

 

 
Fig. 4: The pressure P [MPa] as a function of number density n × 1027 [atoms/m3] at t two temperatures T [K] 
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Fig. 5: The pressure P [MPa] as a function of volume V [m3/atoms] at two temperatures T [K] 

 
Table 2: The critical volume Vc at the maximum pressure Pmax [MPa] for two temperatures T [K], calculated from the virial 

equation of state for n=0.4×1027atoms/m3 
T [K] Vc [m3/atoms] Pmax [MPa] 

120 1.5 ×10-2 0.460 
128 1.5 ×10-2 0.562 

 

 
Fig. 6: The compressibility Z versus number density n [atoms/m3] at different temperatures T [K] 

 

3.4. Other thermodynamic properties 

After obtaining B, one can readily determine the 
internal energy U, the enthalpy H, and the Helmholtz 
free energy F as follows (Mozafari and Sharabadi, 
2011; Mamedova and Somuncu, 2017): 

 

𝑈(𝑇) ≈ 𝑁𝐾𝐵 (
3

2
𝑇 − 𝑛𝑇2 𝑑𝐵(𝑇)

𝑑𝑇
)                                               (11) 

𝐻 = 𝑈 + 𝑁𝐾𝐵𝑇(1 + 𝑛𝐵(𝑇))                                                    (12) 
𝐹 = 𝑁𝐾𝐵𝑇[ln  (𝑛𝜆3) − 1 + 𝑛𝐵(𝑇)]                                        (13) 
 

The results have been calculated for the number 
density n=4x1025 atoms/m3. These results are 
displayed in Figs. 7-9. It was noted that 𝑈, 𝐻, and 𝐹 
increase with increasing 𝑇. This was because 
repulsive forces increase with increasing 𝑇. 
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Fig. 7: The internal energy U [J/mol] as a function of temperature T [K] at n = 4x1025 atoms/m3 

 

 
Fig. 8: The enthalpy H [J/mol] as a function of temperature T [K] at n = 4x1025 atoms/m3 

 

 
Fig. 9: The Helmholtz free energy F [J/mol] versus temperature T[K] at n = 4x1025 atoms/m3 
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4. Conclusion 

The many-body phase shifts for Kr gas are 
calculated for different number densities in the 
temperature-range 120-130 K, using the Galitskii-
Migdal-Feynman formalism. These phase shifts are 
inserted in the Beth-Uhlenbeck formula to determine 
the quantum second virial coefficient Bq. Starting 
with Bq, standard expressions have been used to 
determine the thermodynamic properties of the 
system. It was noted that U, H, and F increase with 
increasing T. This was because repulsive forces 
increase with increasing T, and the gas becomes 
more and more ideal with decreasing n, as expected. 
The P–V–T behavior is carefully investigated, from 
which the phase (gas-liquid) transition is predicted. 
Bq is a good pointer to show the effect of the 
interatomic potential on the thermodynamic 
properties, particularly the pressure; i.e. when T 
decreases, the attractive forces between the 
interacting atoms increase, Bq becomes more 
negative, which leads the pressure to decrease and 
vice versa. On the other hand, Bq starts to decrease 
as the number density n increases. 
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