International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 8 (August 2022), Pages: 1-8

----------------------------------------------

 Original Research Paper

On the memory-dependent derivative electric-thermoelastic wave characteristics in the presence of a continuous line heat source

 Author(s): Magdy M. Amin 1, 2, Mohamed H. Hendy 1, 2, *, Magdy A. Ezzat 3

 Affiliation(s):

 1Department of Mathematics, Faculty of Science, Northern Border University, Arar, Saudi Arabia
 2Department of Mathematics, Faculty of Science, Al Arish University, Al Arish, Egypt
 3Department of Mathematics, College of Science and Arts, Qassim University, Al Bukairiyah, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-1919-1647

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.08.001

 Abstract:

In the present work, the definition of memory-dependent derivative (MDD) heat transfer in a solid body was used to investigate the problem of wave characteristics in an unbounded electric-thermoelastic solid due to a continuous line heat source in the presence of a uniform magnetic field. Both Laplace and Hankel's transform strategies are used to acquire the widespread answer in a closed-form. Analytical findings were obtained for the distribution within the medium of various fields such as temperature, displacement, and stresses. For the inversion of the Laplace transformations, a computational approach is used. The distributions of the numerical consequences of the non-dimensional considered bodily variables are represented graphically. Detailed comparative evaluation is represented thru the numerical outcomes to estimate the results of the kernels, time-delay, figure-of-merit, and magnetic number on the behavior of all variables. The effect offers a concept to research main electric-thermoelastic materials as any other type of pertinent materials.

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Electro-thermoelasticity theory, Memory-dependent derivative, Line heat source, Bessel function, Laplace transforms

 Article History: Received 5 February 2022, Received in revised form 29 April 2022, Accepted 4 May 2022

 Acknowledgment 

The authors gratefully acknowledge the approval and the support of this research study by Grant No. SCI-2018-3-9-F-7606 from the Deanship of Scientific Research in Northern Border University, Arar, KSA.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Amin MM, Hendy MH, and Ezzat MA (2022). On the memory-dependent derivative electric-thermoelastic wave characteristics in the presence of a continuous line heat source. International Journal of Advanced and Applied Sciences, 9(8): 1-8

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 

 Tables

 No Table 

----------------------------------------------    

 References (36)

  1. Biot MA (1956). Thermoelasticity on irreversible thermodynamics. Journal of Applied Physics, 27(3): 240-253. https://doi.org/10.1063/1.1722351   [Google Scholar]
  2. Cattaneo C (1958). A form of heat-conduction equations which eliminates the paradox of instantaneous propagation. Comptes Rendus, 247(3): 431–433.   [Google Scholar]
  3. El Sherif SFM, Ismail MA, El-Bary AA, and Atef HM (2020). Effect of magnetic field on thermos: Viscoelastic cylinder subjected to a constant thermal shock. International Journal of Advanced and Applied Sciences, 7(1): 117-124. https://doi.org/10.21833/ijaas.2020.01.012   [Google Scholar]
  4. El-Karamany AS and Ezzat MA (2013). On the three-phase-lag linear micropolar thermoelasticity theory. European Journal of Mechanics-A/Solids, 40: 198-208. https://doi.org/10.1016/j.euromechsol.2013.01.011   [Google Scholar]
  5. Ezzat M, Zakaria M, Shaker O, and Barakat F (1996). State space formulation to viscoelastic fluid flow of magnetohydrodynamic free convection through a porous medium. Acta Mechanica, 119(1): 147-164. https://doi.org/10.1007/BF01274245   [Google Scholar]
  6. Ezzat MA (2020). Thermo-mechanical memory responses of biological viscoelastic tissue with variable thermal material properties. International Journal of Numerical Methods for Heat and Fluid Flow. 31(1): 548-569. https://doi.org/10.1108/HFF-03-2020-0182   [Google Scholar]
  7. Ezzat MA and El-Bary AA (2015). Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature. Journal of Mechanical Science and Technology, 29(10): 4273-4279. https://doi.org/10.1007/s12206-015-0924-1   [Google Scholar]
  8. Ezzat MA and El-Bary AA (2016). Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. International Journal of Thermal Sciences, 108: 62-69. https://doi.org/10.1016/j.ijthermalsci.2016.04.020   [Google Scholar]
  9. Ezzat MA and Youssef HM (2010). Stokes’ first problem for an electro-conducting micropolar fluid with thermoelectric properties. Canadian Journal of Physics, 88(1): 35-48. https://doi.org/10.1139/P09-100   [Google Scholar]
  10. Ezzat MA, El Karamany AS, and El-Bary AA (2016a). Electro-thermoelasticity theory with memory-dependent derivative heat transfer. International Journal of Engineering Science, 99(2): 22-38. https://doi.org/10.1016/j.ijengsci.2015.10.011   [Google Scholar]
  11. Ezzat MA, El-Karamany AS, and El-Bary AA (2014). Generalized thermo-viscoelasticity with memory-dependent derivatives. International Journal of Mechanical Sciences, 89: 470-475. https://doi.org/10.1016/j.ijmecsci.2014.10.006   [Google Scholar]
  12. Ezzat MA, El-Karamany AS, and El-Bary AA (2015). Thermo-viscoelastic materials with fractional relaxation operators. Applied Mathematical Modelling, 39(23-24): 7499-7512. https://doi.org/10.1016/j.apm.2015.03.018   [Google Scholar]
  13. Ezzat MA, El-Karamany AS, and El-Bary AA (2016b). Modeling of memory-dependent derivative in generalized thermoelasticity. The European Physical Journal Plus, 131(10): 1-12. https://doi.org/10.1140/epjp/i2016-16372-3   [Google Scholar]
  14. Ezzat MA, El-Karamany AS, and Samaan AA (2001). State-space formulation to generalized thermoviscoelasticity with thermal relaxation. Journal of Thermal Stresses, 24(9): 823-846. https://doi.org/10.1080/014957301750379612   [Google Scholar]
  15. Ezzat MA, El-Karamany AS, Samaan AA, and Zakaria M (2003). The relaxation effects of the volume properties of viscoelastic material in generalized thermoelasticity with thermal relaxation. Journal of Thermal Stresses, 26(7): 671-690. https://doi.org/10.1080/713855997   [Google Scholar]
  16. Faisal S (2020). Numerical solution for heat transfer of Oldroyd–B fluid over a stretching sheet using successive linearization method. International Journal of Advanced and Applied Sciences, 7(6): 40-47. https://doi.org/10.21833/ijaas.2020.06.006   [Google Scholar]
  17. Hendy MH, Amin MM, and Ezzat MA (2018). Magneto-electric interactions without energy dissipation for a fractional thermoelastic spherical cavity. Microsystem Technologies, 24(7): 2895-2903. https://doi.org/10.1007/s00542-017-3643-y   [Google Scholar]
  18. Hendy MH, Amin MM, and Ezzat MA (2019). Two-dimensional problem for thermoviscoelastic materials with fractional order heat transfer. Journal of Thermal Stresses, 42(10): 1298-1315. https://doi.org/10.1080/01495739.2019.1623734   [Google Scholar]
  19. Hoing G (1984). A method for the numerical inversion of the Laplace transform. Journal of Computational and Applied Mathematics, 10: 113-132. https://doi.org/10.1016/0377-0427(84)90075-X   [Google Scholar]
  20. Ismael HF (2017). Carreau-Casson fluids flow and heat transfer over stretching plate with internal heat source/sink and radiation. International Journal of Advanced and Applied Sciences, 4(7): 11-15. https://doi.org/10.21833/ijaas.2017.07.003   [Google Scholar]
  21. Kaliski S and Petykiewicz J (1959). Equation of motion coupled with the field of temperature in a magnetic field involving mechanical and electrical relaxation for anisotropic bodies. Proceedings of Vibration Problems, 4: 1.   [Google Scholar]
  22. Khamis AK, El-Bary AA, Youssef HM, and Bakali A (2020). Generalized thermoelasticity with fractional order strain of infinite medium with a cylindrical cavity. International Journal of Advanced and Applied Sciences, 7(7): 102-108. https://doi.org/10.21833/ijaas.2020.07.013   [Google Scholar]
  23. Khamis AK, Nasr AMAA, El-Bary AA, and Atef HM (2021). Effect of modified Ohm's and Fourier's laws on magneto thermoviscoelastic waves with Green-Naghdi theory in a homogeneous isotropic hollow cylinder. International Journal of Advanced and Applied Sciences, 8(6): 40-47. https://doi.org/10.21833/ijaas.2021.06.005   [Google Scholar]
  24. Knopoff L (1955). The interaction between elastic wave motions and a magnetic field in electrical conductors. Journal of Geophysical Research, 60(4): 441-456. https://doi.org/10.1029/JZ060i004p00441   [Google Scholar]
  25. Load H and Shulman Y (1967). A generalized dynamical theory of thermoelasticty. Journal of the Mechanics and Physics of Solids, 15: 299-309. https://doi.org/10.1016/0022-5096(67)90024-5   [Google Scholar]
  26. Noshad JA and Kolahchi R (2015). Magneto-thermo nonlinear vibration analysis of pipes reinforced with CNTs. International Journal of Advanced and Applied Sciences, 2(11): 47-53.   [Google Scholar]
  27. Povstenko YZ (2016). Thermoelasticity which uses fractional heat conduction equation. Matematichni Metodi ta Fiziko-Mekhanichni Polya, 51(2): 239-246.   [Google Scholar]
  28. Rowe DM (1995). Handbook of thermoelectrics. CRC Press, Florida, USA.   [Google Scholar]
  29. Shercliff JA (1979). Thermoelectric magnetohydrodynamics. Journal of Fluid Mechanics, 91(2): 231-251. https://doi.org/10.1017/S0022112079000136   [Google Scholar]
  30. Sherief HH, Allam MN, and El-Hagary MA (2011). Generalized theory of thermoviscoelasticity and a half-space problem. International Journal of Thermophysics, 32(6): 1271-1295. https://doi.org/10.1007/s10765-011-1017-8   [Google Scholar]
  31. Sherief HH, El-Sayed A, and Abd El-Latief AM (2010). Fractional order theory of thermoelasticity. International Journal of Solids and Structures, 47(2): 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034   [Google Scholar]
  32. Slayi SA and Ashmawy EA (2019). Steady motion of an incompressible microstretch fluid between two rotating spheres with slip conditions. International Journal of Advanced and Applied Sciences, 6(12): 105-111. https://doi.org/10.21833/ijaas.2019.12.013   [Google Scholar]
  33. Vernotte P (1961). Some possible complications in the phenomena of thermal conduction. Compte Rendus, 252(1): 2190-2191.   [Google Scholar]
  34. Wang JL and Li HF (2011). Surpassing the fractional derivative: Concept of the memory-dependent derivative. Computers and Mathematics with Applications, 62(3): 1562-1567. https://doi.org/10.1016/j.camwa.2011.04.028   [Google Scholar]
  35. Youssef HM (2010). Theory of fractional order generalized thermoelasticity. Journal of Heat Transfer, 132(6): 061301. https://doi.org/10.1115/1.4000705   [Google Scholar]
  36. Yu YJ, Hu W, and Tian XG (2014). A novel generalized thermoelasticity model based on memory-dependent derivative. International Journal of Engineering Science, 81: 123-134. https://doi.org/10.1016/j.ijengsci.2014.04.014   [Google Scholar]