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In the present work, the definition of memory-dependent derivative (MDD) 
heat transfer in a solid body was used to investigate the problem of wave 
characteristics in an unbounded electric-thermoelastic solid due to a 
continuous line heat source in the presence of a uniform magnetic field. Both 
Laplace and Hankel's transform strategies are used to acquire the 
widespread answer in a closed-form. Analytical findings were obtained for 
the distribution within the medium of various fields such as temperature, 
displacement, and stresses. For the inversion of the Laplace transformations, 
a computational approach is used. The distributions of the numerical 
consequences of the non-dimensional considered bodily variables are 
represented graphically. Detailed comparative evaluation is represented thru 
the numerical outcomes to estimate the results of the kernels, time-delay, 
figure-of-merit, and magnetic number on the behavior of all variables. The 
effect offers a concept to research main electric-thermoelastic materials as 
any other type of pertinent materials. 
 

Keywords: 
Electro-thermoelasticity theory 
Memory-dependent derivative 
Line heat source 
Bessel function 
Laplace transforms 

© 2022 The Authors. Published by IASE. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

1. Introduction 

*Building and structural scientists, as well as 
designers, developers, and makers, are all fascinated 
with heat transfer. Traditional applications, such as 
general power frameworks and heat exchangers, 
have been investigated extensively by Ismael (2017), 
Faisal (2020), and Slayi and Ashmawy (2019). 

A few endeavors have been made to beat the 
downsides of the Fourier constitutive law of heat 
conduction and these endeavors offered to ascend to 
the theory of generalized thermoelasticity. Parallel 
research work is additionally being sought after 
amid the most recent couple of decades in the field of 
thermoelasticity to give significant improvements in 
the territory of “thermoelasticityˮ, representing non-
Fourier heat conduction in elastic materials. 

Load and Shulman (1967) supplanted the Fourier 
law with the recipe created by Cattaneo (1958) and 
Vernotte (1961) in coupled thermoelasticity 
presented by Biot (1956) and proposed the 
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broadened theory of thermoelasticity with one 
relaxation time for homogeneous elastic media. The 
works of Ezzat et al. (1996; 2001; 2003), Sherief et 
al. (2011), El-Karamany and Ezzat (2013), and El 
Sherif et al. (2020) are contributions to the field. 

Fractional calculus extends ordinary calculus. 
Fractional calculus is a useful mathematical tool for a 
wide range of difficulties in science and engineering 
because it can more easily and accurately describe 
mechanical and physical processes with historical 
memory and spatial non-local correlation. The 
physical meaning of the fractional derivative's 
parameters is basic and exact, and the fractional 
derivative is easy to express. Fractional calculus is 
currently widely used in a broad range of fields, 
including mathematical physics, classical and 
quantum mechanics, control theory, nonlinear 
dynamics, signal and image processing, 
thermodynamics, and biological engineering. 
Povstenko (2016) investigated new thermoelasticity 
models that use fractional derivatives. The fractional 
order theory of thermoelasticity was derived by 
Sherief et al. (2010) and Youssef (2010). Ezzat et al. 
(2015) introduced a new model of thermoelasticity 
theory in the context of a new consideration of heat 
conduction with fractional order. Ezzat and El-Bary 
(2016) studied the effects of variable thermal 
conductivity and fractional order of heat transfer on 
a perfect conducting infinitely long hollow cylinder 
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and Hendy et al. (2019) solved a two-dimensional 
problem for thermoviscoelastic materials with 
fractional order heat transfer, while Khamis et al. 
(2020) solved some problems in fractional 
thermoelasticity theory. 

The memory-dependent derivatives presented by 
Wang and Li (2011) proved to be a useful 
mathematical tool that filled a gap in many practical 
scenarios. The integer ordered differential operator 
is a local operator whereas the fractional ordered 
differential operator is non-local. The non-local 
nature of the fractional derivative establishes its 
somewhat memory-dependent nature, which is a 
much more realistic fitting to real world physical 
problems. Thus in some recent studies fractional 
ordered derivatives come into account more 
frequently than integer ordered derivatives in 
various physical problems. Parallel to fractional 
ordered derivatives, memory-dependent derivatives 
serve as an important mathematical tool in 
describing many real world phenomena. One can 
refer to Yu et al. (2014), Ezzat et al. (2014; 2016a; 
2016b), Ezzat and El-Bary (2015), and Ezzat (2020) 
for an overview of utilizations of memory-dependent 
derivative analytics. 

The establishment of magnetoelasticity was 
displayed by Knopoff (1955) and created by Kaliski 
and Petykiewicz (1959). Among the authors who 
considered the generalized magnetothermoelasticity 
equations are Hendy et al. (2018), Khamis et al. 
(2021), and Noshad and Kolahchi (2015). 

Direct conversion of energy and heat using 
thermoelectric materials has gotten a lot of interest 
because of its prospective use in Peltier coolers and 
thermoelectric power generators see Rowe (1995). 
The contributions of Shercliff (1979) and Ezzat and 
Youssef (2010) to continuum mechanics of 
thermoelectric materials are important. 

The main objective of this work is to look at how 
the kernel function with different types, time-delay 
parameter, and magnetic number as well as a figure-
of-merit effect on all obtaining functions in a one-
dimensional problem. We employ the potential 
function approach in combination with the Laplace 
and Hankel transform methodology to generate 
solutions in the transformed domain. Analytically, 
Hankel inversion is performed and the exact solution 
of the considered problem is obtained in Laplace 
transform domain. The numerical computation and 
graphical plots of the distribution of the field 
variables for copper material are used to 
demonstrate the analytical conclusions.  

2. Mathematical model 

In the absence of an external electric field E, a 
steady magnetic field of strength H pervades the 
medium. The system of governing equations of the 
linear electro-thermoelasticity theory with memory-
dependent derivative consists of the following 
equations: 

 

1. The figure-of-merit ZTo at some reference 
temperature To (Rowe, 1995), 

 

𝑍𝑇𝑜 =
𝜎𝑠𝑜

2

𝑘
𝑇𝑜                                                                                    (1) 

 

2. The first Thomson relation at To (Shercliff, 1979), 
 
𝜋𝑜 = 𝑠𝑜𝑇𝑜                                                                                         (2) 
 

3. Modified Fourier's heat conduction law (Ezzat and 
Youssef, 2010), 

 
𝑞𝑖 = −𝑘𝑇,𝑗 + 𝜋𝑜𝐽𝑖                                                                          (3) 

 

4. Modified Ohm's law is defined as (Ezzat and 
Youssef, 2010), 

 

𝐽𝑖 = 𝜎[𝐸𝑖 + 𝜇𝑜(𝑢̇𝑘Λ𝐻𝑗) − 𝑠𝑜𝑇,𝑖                                                        (4) 

 

5. Displacement equation, taking into account the 
Lorentz forces, 

 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2
= 𝜎𝑖𝑗,𝑗 + 𝜇𝑜(𝐽Λ𝐻)𝑖                                                              (5) 

 

6. The constitutive equation,  
 
𝜎𝑖𝑗 = 𝜆𝑒𝑘𝑘 + 2𝜇𝑒𝑖𝑗 − 𝛾(𝑇 − 𝑇𝑜)                                                (6) 

 

7. The energy equation in the presence of heat 
sources (Ezzat et al., 2014) 

 

(1 + 𝜔𝐷𝜔) (𝜌𝐶𝐸  
𝜕𝑇

𝜕𝑡
+ 𝛾𝑇𝑜

𝜕𝑒

𝜕𝑡
) = 𝑘∇2𝑇 − 𝜋𝑜𝐽,𝑗 +

(1 + 𝜔𝐷𝜔)𝑄                                                                                    (7) 
 

where, 
 

𝐷𝜔𝑓(𝑡) =
1

𝜔
∫ 𝐾(𝑡 − 𝜉)
𝑡

𝑡−𝜔

𝑓′(𝜉)𝑑𝜉 

 

8. The kinematic relations: 
 

𝜀𝑖𝑗 =
1

2
( 𝑢𝑖,𝑗 + 𝑢𝑗,𝑖  )                                                                       (8) 

 

Together with the preceding equations, they 
provide a full system of generalized electro-
thermoelasticity with a memory-dependent 
derivative for an electrically conducting material in 
the presence of a continuous line heat source. A 
comma signifies material derivatives in the above 
equations. The summarization convention is 
employed. 

3. Formulation of the problem 

We consider a homogeneous isotropic 
unbounded thermoelectric elastic solid in the 
presence of a continuous line heat source under 
axisymmetric conditions. Let (𝑟, 𝜓, 𝑧) be cylindrical 
coordinates, with the z-axis serving as the axis of 
symmetry. Assume also that the initial magnetic field 
𝐻 acts in the direction of the z-axis and has the 
components (0, 0, 𝐻𝑜). As a result, electro-
thermoelastic interactions in nature are symmetrical 
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around the axis, with temperature and displacement 
determined by distance r from the axis and time t.  

The fundamental governing equations are given 
as: 

 
i. The components of the displacement vector will be 

taken the form, 
 
𝑢𝑟 = 𝑢(𝑟, 𝑡), 𝑢𝜓 = 0,   𝑢𝑧 = 0                                                      (9) 

 

From Eq. 8 we can obtain the strain components, 
 

𝑒 = 𝑒𝑟𝑟 + 𝑒𝜓𝜓 + 𝑒𝑧𝑧 =
1

𝑟2
𝜕

𝜕𝑥
(𝑟2 𝑢)                                        (10) 

 

ii. The equation of motion in the presence of a 
constant magnetic field is, 

 

𝜌
𝜕2𝑢

𝜕𝑡2
= 𝜇∇2𝑢 −

𝜇

𝑟2
𝑢 + (𝜆 + 2𝜇)

𝜕𝑒

𝜕𝑟
− 𝜎𝜇𝑜

2𝐻𝑜
2 𝜕𝑢

𝜕𝑡
− 𝛾

𝜕𝑇

𝜕𝑟
     (11) 

 

iii. The heat transfer equation in the presence of a 
continuous line source is, 

 

k(1 + ZTo)∇
2T = (1 + ωDω) (ρCE  

∂T

∂t
+ γTo

∂e

∂t
− Q)       (12) 

 

From now on, the Kernel function form 𝐾(𝑡 −
 𝜉)can be chosen freely as: 
 

𝐾(𝑡 −  𝜉) = 1 −
2n

ω
(𝑡 − 𝜉) +

m2(𝑡 − 𝜉)2

𝜔2

=

{
 
 

 
 
  1                       𝑖𝑓  𝑚 = 𝑛 = 0                     

1 −
(𝑡 − 𝜉)

𝜔
          𝑖𝑓  𝑚 = 0, 𝑛 =

1

2
  

(1 −
𝑡 − 𝜉

𝜔
)2              𝑖𝑓  𝑚 = n = 1       

 

 

iv. The normal stress components are 
 

𝜎𝑟𝑟 = 2𝜇
𝜕𝑢

𝜕𝑟
+ 𝜆𝑒 − 𝛾(𝑇 − 𝑇𝑜)                                                    (13) 

𝜎𝜓𝜓 = 𝜇
𝑢

𝑟
+ 𝜆𝑒 − 𝛾(𝑇 − 𝑇𝑜)                                                    (14) 

 

where, e is the cubical dilatation 𝑒 =
𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
=

1

𝑟

𝜕𝑟𝑢

𝜕𝑟
, 

and ∇2 is the one-dimensional Laplace’s operator in 

cylindrical coordinates, namely ∇2=
𝜕2𝑢

𝜕𝑟2
+

1

𝑟
 
𝜕

𝜕𝑟
. 

We shall use the following non-dimensional 
variables: 
 

𝑟′ = 𝑐𝑜𝜂𝑜𝑟 , 𝑢
′ = 𝑐𝑜𝜂𝑜𝑢 , 𝑡

′ = 𝑐𝑜
2𝜂𝑜𝑡 ,  𝜏𝑜

′ = 𝑐𝑜
2𝜂𝑜𝜏 , 𝜎𝑖𝑗

′ =
𝜎𝑖𝑗

𝜆 + 2𝜇
,   𝜃

=
𝛾

𝜆 + 2𝜇
(𝑇 − 𝑇𝑜) 

𝜑′ = 𝑐𝑜
2𝜂2𝜑 , 𝑄′ =

𝐽

𝑘𝜌𝑐𝑜
4𝜂2

𝑄 , 𝑞′ =
𝛾

𝑘𝜌𝑐𝑜
3𝜂𝑜

 𝑞 , 𝜂 =
𝜌𝐶𝐸
𝑘
, ℎ′ =

ℎ

𝐻𝑜
 ,   𝐽′

=
𝐽

𝐻𝑜𝑐𝑜𝜂
 

 

Eqs. 9-14 take the following forms (dropping the 
primes for convenience): 
 

𝛻2𝜑 − 𝛼
𝜕2𝜑

𝜕𝑡2
− 𝛼𝑀

𝜕𝜑

𝜕𝑡
= 𝛼𝜃                                                     (15) 

∇2θ =
(1+ωDω)

1+ZTo
(
∂θ

∂t
+ ε

∂

∂t
∇2φ − Q)                                         (16) 

𝜎𝑟𝑟 =
𝜕𝑢

𝜕𝑟
+ 𝛽

𝑢

𝑟
− 𝜃,                                                                     (17) 

𝜎𝜓𝜓 = 𝛽
𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
− 𝜃,                                                                    (18) 

 

where, φ is the thermoelastic potential function is 
given by, 
 

𝑢 =
𝜕𝜑

𝜕𝑟
                                                                                            (19) 

 

and 𝛽 =
2𝜆

𝜆+2𝜇
, 𝜀 =

𝛾2𝑇𝑜

𝜌𝐶𝐸(𝜆+2𝜇)
, 𝑐𝑜 = √

(𝜆+2𝜇)

𝜌
  ,    𝑀 =

𝜎𝜇𝑜
2𝐻𝑜

2

𝜌𝑐𝑜
2𝜂

. 

Assuming that the heat source operating on the 
current medium is of the continuous line type, we 
may write it as follows: 
 

𝑄(𝑟, 𝑡) =
1

2𝜋𝑟
𝑄𝑜𝛿(𝑟)𝐻(𝑡)                                                         (20) 

 

where, 𝑄𝑜  is constant, 𝛿(𝑟) is the Dirac delta function 
and 𝐻(𝑡) is the Heaviside unit step function. 

We assume that all field variables vanish at 𝑟 ⟶
 ∞. Mathematically we can write:  
 
𝑢 , 𝜃, 𝜎𝑟𝑟 𝑎𝑛𝑑 𝜎𝜃𝜃 ⟶ 0 𝑎𝑠 𝑟 ⟶  ∞                                        (21) 
 

The initial conditions of the problem are given by, 
 

𝑢(𝑟, 0) = 𝑢̇(𝑟, 0) = 𝜃(𝑟, 0) = 𝜃̇(𝑟, 0) = 𝜎𝑟𝑟(𝑟, 0) =
𝜎𝜓𝜓̇ (𝑟, 0) = 𝜎𝜓𝜓(𝑟, 0) = 0                                                       (22) 

4. The solution in the Laplace transform domain 

Applying the Laplace transform defined by the 
formula, 
 

𝐿{𝑔(𝑡) = 𝑔̅(𝑠) = ∫ 𝑒−𝑠𝑡𝑔(𝑡)𝑑𝑡
∞

0

 

 
to both sides of Eqs. 15-21, and using the initial 
conditions 22, we arrive at: 
 
𝛻2𝜑̅ = 𝛽(𝑠𝜃̅ + 𝜀𝑠(𝑠 + 𝑀)𝜑̅ = 𝛼𝜃̅                                          (23) 
𝛻2𝜃̅ = 𝛽(𝑠𝜃̅ + 𝜀𝑠𝛻2𝜑̅ − 𝑄̅)                                                      (24) 

𝜎̅𝑟𝑟 = [(
𝜆𝑜−1

𝑟
)
𝜕

𝜕𝑟
+ 𝛼𝑠(𝑠 + 𝑀)] 𝜑̅                                           (25) 

𝜎̅𝜓𝜓 = [(
𝜆𝑜−1

𝑟
)
𝜕2

𝜕𝑟2
+ 𝛼𝑠(𝑠 + 𝑀)] 𝜑̅                                        (26) 

 

where, 
 

𝑄̅ =
1

2𝜋𝑟𝑠
𝑄𝑜𝛿(𝑟)                                                                          (27) 

𝐺(𝑠) = (1 − 𝑒−𝑠𝜔) (1 −
2𝑛

𝜔𝑠
+
2𝑚2

𝜔2𝑠2
) − (𝑚2 − 2𝑛

+
2𝑚2

𝜔𝑠
)𝑒−𝑠𝜔 

                                                                                                         (28) 
 

and, 
 
β = (1 − 𝐺)/ (1 + ZTo)  and  λ𝑜 = 2𝜆/ (λ + 2μ). 
 

Eliminating 𝜃̅ from Eqs. 23 and 24, we obtain: 
 
{𝛻4 − [𝛼𝑠(𝑠 + 𝑀) + 𝑠𝛽(1 + 𝛼𝜀)]𝛻2 + 𝛼𝑠3𝛽}𝜑̅ =

−
𝑄𝑜𝛽

2𝜋𝑟𝑠
𝛿(𝑟)                                                                                    (29) 

 

Eq. 29 can be factorized as: 
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(𝛻2 − 𝑘1
2)(𝛻2 − 𝑘2

2)𝜑̅ = −
𝑄𝑜𝛽

2𝜋𝑟𝑠
𝛿(𝑟)                                     (30) 

 

where, k1
2 𝑎𝑛𝑑  𝑘2

2 are the roots of the characteristic 
equation, 
 
𝑘4 − [𝛼𝑠(𝑠 + 𝑀) + 𝑠𝛽(1 + 𝛼𝜀)]𝑘2 + 𝛼𝛽𝑠3 = 0                (31) 
 

and satisfy the following two relations: 
 
𝑘1
2 + 𝑘2

2 = 𝛼𝑠(𝑠 +𝑀) + 𝑠𝛽(1 + 𝛼𝜀)                                   
k1
2  𝑘2

2 = 𝛼𝛽𝑠3                                                                              (32) 
 

Applying Hankel transform which can be defined 
as: 
 

𝑓̅̂(𝜍, 𝑠) = ∫ 𝑟 𝐽𝑜(𝜍𝑟)𝑓(̅𝑟, 𝑠)𝑑𝑟
∞

0
                                                (33) 

 

on Eq. 30, we have 
 

(𝜍1
2 + 𝑘1

2)(𝜍2
2 − 𝑘2

2)𝜑̂̅ = −
𝑄𝑜𝛽

2𝜋𝑟𝑠
                                                      (34) 

 

where, 𝐽𝑜 is the Bessel function of the first kind of 
order zero. 

By applying the inverse Hankel transform of Eq. 
34 we achieve, 
 

𝜑̅(𝑟, 𝑠) =
𝑄𝑜𝛽

2𝜋𝑠(𝑘1
2− 𝑘2

2)
∑ (−1)𝑖−1𝐾𝑜(𝑘𝑖𝑟)
2
𝑖=1                            (35) 

 

where, 𝐾𝑜(𝑘𝑖𝑟) is the modified Bessel function of the 
second kind of order zero. 

The displacement and temperature distributions 
can be obtained by substituting Eq. 35 into Eqs. 19, 
and 23, respectively as: 
 

𝑢̅(𝑟, 𝑠) =
𝑄𝑜𝛽

2𝜋𝑠(𝑘1
2− 𝑘2

2)
∑ (−1)𝑖𝑘𝑖𝐾𝑜(𝑘𝑖𝑟)
2
𝑖=1                             (36) 

𝜃̅(𝑟, 𝑠) =
𝑄𝑜𝛽

2𝜋𝑠𝛼(𝑘1
2 − 𝑘2

2)
∑(−1)𝑖(𝑘𝐼 − 𝛼𝑠(𝑠 + 𝑀)𝐾𝑜(𝑘𝑖𝑟)

2

𝑖=1

 

                                                                                                         (37) 
 

Substituting from Eqs. 36 and 37 into Eqs. 25 and 
26, we obtain the following solutions for the 
components of normal stress: 
 

𝜎̅𝑟𝑟(𝑟, 𝑠) =
𝑄𝑜𝛽(∑ (−1)𝑖−1[(1−𝜆𝑜)𝑘𝑖𝐾1(𝑘𝑖𝑟)+𝛼𝑟𝑠(𝑠+𝑀)𝐾1(𝑘𝑜𝑟)]

2
𝑖=1 )

2𝜋𝑠(𝑘1
2− 𝑘2

2)
   

                                                                                                         (38) 
𝜎̅𝜃𝜃(𝑟, 𝑠) =
𝑄𝑜𝛽(∑ (−1)𝑖−1[𝑟(𝜆𝑜−1)𝑘𝑖

2+𝛼𝑟𝑠(𝑠+𝑀)𝐾𝑜(𝑘𝑜𝑟)+(𝜆𝑜−1)𝑘𝑖𝐾1(𝑘𝑖𝑟)]
2
𝑖=1 )

2𝜋𝑠(𝑘1
2− 𝑘2

2)
  (39) 

 

where, K1(kir) is the modified Bessel function of the 
second kind of order one. 

This completes the solution in the Laplace 
transform domain. In the physical domain, the 
solution may be derived by reversing the Laplace 
transforms involved in Eqs. 36-39. Due to the 
involvement of the intricate expressions given above 
on the Laplace transform parameter s, it is a difficult 
task to obtain the inverse Laplace transform of Eqs. 
35-39 analytically all values of the time. As a result, 
we get numerical results, which are discussed in the 
next section, in order to evaluate the influence of 
various kernel functions, time delays, and magnetic 

numbers on the nature of all physical fields, such as 
temperature, displacement, and radial and 
circumferential stresses. 

5. Numerical results and discussion 

In order to invert the Laplace transforms in Eqs. 
36-39, we adopt a numerical inversion method 
based on Fourier series expansion (Hoing, 1984). For 
this purpose, we used the Fortran 77 programming 
language on a personal computer with an I7 
processor. The analysis is conducted for a copper 
material. The values of physical constants are taken 
as Ezzat et al. (2016a): 
 
𝜌 =  8954 𝑘𝑔/𝑚3, 𝑘 = 0.55  J/m. sec. K, 𝜇 = 3.86(10)10 N/
 𝑚2, 𝜀 = 0.0168 
𝐶𝐸 =  381.1 J/kg.𝐾, 𝜆 = 7.76(10)10 N/ 𝑚2, 𝑇𝑜 = 293𝐾, and 
𝜇𝑜𝐻𝑜 = 1 Tesla   
 

Using the solutions supplied by Eqs. 36, 37, 38, 
and 39, we compute the numerical values of 
temperature, displacement, radial stress, and 
circumferential stress at non-dimensional time 
value, namely (𝑡 =  0.1). In this part, we aim to show 
how the kernel function, time delay, and magnetic 
number affect the nature of all physical fields 
including temperature, displacement, and both 
radial and circumferential stresses. The outcomes 
are represented graphically in Figs. 1-6, for different 
values of r and temperature, 𝜃.  

The temperature field has been shown to 
fluctuate in two ways: First, when the kernel 
functions are the same but the time-delay parameter 
is different, and second when the kernel functions 
are the same but the time-delay parameter is 
different. Fig. 1 indicates the variation in 
temperature for different values of time-delay 
𝜔(0.0005, 0.005 , 0.05 ) and 𝐾(𝑡, 𝜉)  =  1. We can 
observe that the temperature behavior is 
significantly influenced by the time delay and the 
region of influence increases with a decrease in the 
time-delay parameter. It is observed that the effect of 
time delay is more significant at a lower time of 
interaction. Fig. 2 shows the distribution of the 
temperature for different forms of the kernel 
function, namely as 𝐾(𝑡, 𝜉)  =  1, 1 − (𝑡 −  𝜉) /𝜔 and 
[1 − (𝑡 −  𝜉) /𝜔]2 for a time-delay of  𝜔 = 0.15 The 
temperature's influence zone is explicitly declared to 
be confined in all scenarios. It is noted that the 
temperature field has the maximum value at the 
initial points, i.e. when the distance 𝑟 = 0. 
Furthermore, the temperature field is observed to 
have one local lowest value and then one local 
highest value before completely vanishing at a 
specific distance. As the distance rises, this field's 
value decreases. We also find that when the non-
linear form of kernel function is used as  𝐾(𝑡, 𝜉) =
[1 − (𝑡 −  𝜉) /𝜔]2, the temperature reaches its 
maximum value and the lowest value for the 
constant kernel function 𝐾(𝑡, 𝜉) = 1. As a result, we 
uncover that the kernel function has a significant 
impact on temperature fluctuation, with the kernel's 
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influence being more prominent near extreme points at all times. 
 

 
Fig. 1: The variation of temperature for different values of time-delay 𝜔 and kernel function 𝐾(𝑡, 𝜉) = 1 

 

 
Fig. 2: The variation of temperature for different kernel functions at time-delay 𝜔 = 0.15 

 

Fig. 3 depicts temperature as a function of figure-
of-merit for several thermoelectric materials. We can 
see that the figure-of-merit of thermoelectric 

material is proportional to temperature. In addition, 
we learned from this Fig. 3 that the value of the 
figure-of-merit increases as time delay increases. 

 

 
Fig. 3: The dimensionless figure-of-merit ZT0 is plotted as a function of temperature for several values of time-delay 𝜔 and 

kernel function 𝐾(𝑡, 𝜉) = 1 − (𝑡 −  𝜉)/𝜔 
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Fig. 4: The effect of magnetic number on displacement for different theories 

 

 
Fig. 5: The variation of stress for different values of time-delay 𝜔 and kernel function 𝐾(𝑡, 𝜉) = [1 − (𝑡 −  𝜉) /𝜔]2 

 

 
Fig. 6: The variation of temperature for different values of magnetic number M for different theories 
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Figs. 4, 5, and 6 depict the variation of the 
displacement, radial stress, and circumferential 
stress fields. The effects of magnetic number 𝑀  are 
discussed in different theories. In Figs. 4, 5, and 6, 
dashed lines represent the solution obtained in the 
presence of a constant magnetic field, while solid 
lines are in the absence of this field. Figs. 4, 5, and 6 
taught us that the magnetic field acts to reduce the 
fields. This is due to the fact that the magnetic field is 
related to a phrase that denotes a positive force that 
accelerates charge carriers. 

6. Conclusion 

The fundamental purpose of this research is to 
develop a new mathematical model for the Fourier 
law of heat conduction that incorporates memory-
dependent derivatives and the thermoelectric figure-
of-merit. This model allows us to increase the figure-
of-merit performance of a thermoelectric material 
ZT. 

The findings encourage more study into 
conducting thermoelectric materials, which are 
another type of thermoelectric material. 
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