International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 5 (May 2022), Pages: 32-36

----------------------------------------------

 Original Research Paper

 Title: Robust fuzzy control for non-linear systems with uncertainties: A Takagi-Sugeno model approach

 Author(s): Faisal Alsaket *, Mourad Kchaw, Ahmed Al-Shammari

 Affiliation(s):

 College of Engineering, University of Hail, Hail, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-6857-1948

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.05.004

 Abstract:

This article studies the problem of robust control design for a class of uncertain nonlinear systems using the Takagi–Sugeno (TS) fuzzy models. The objective of this study is to design state feedback and an observer-based controller such that the closed-loop system is asymptotically stable. For this purpose, sufficient conditions are derived, and the corresponding controllers are designed by solving a set of linear matrix inequalities (LMIs). The effectiveness of the proposed design approach is provided via numerical simulations for a permanent magnet synchronous motor (PMSM). 

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Takagi–Sugano fuzzy systems, State feedback observer, Robust control, Uncertainty, Linear matrix inequality

 Article History: Received 13 November 2021, Received in revised form 1 February 2022, Accepted 27 February 2022

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Alsaket F, Kchaw M, and Al-Shammari A (2022). Robust fuzzy control for non-linear systems with uncertainties: A Takagi-Sugeno model approach. International Journal of Advanced and Applied Sciences, 9(5): 32-36

 Permanent Link to this page

 Figures

 Fig. 1 Fig. 2 Fig. 3 Fig. 4  

 Tables

 No Table 

----------------------------------------------    

 References (15)

  1. Cao YY and Frank PM (2000). Robust H disturbance attenuation for a class of uncertain discrete-time fuzzy systems. IEEE Transactions on Fuzzy Systems, 8(4): 406-415. https://doi.org/10.1109/91.868947   [Google Scholar]
  2. Ding B, Sun H, and Yang P (2006). Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi–Sugeno's form. Automatica, 42(3): 503-508. https://doi.org/10.1016/j.automatica.2005.11.005   [Google Scholar]
  3. Fang CH, Liu YS, Kau SW, Hong L, and Lee CH (2006). A new LMI-based approach to relaxed quadratic stabilization of TS fuzzy control systems. IEEE Transactions on Fuzzy Systems, 14(3): 386-397. https://doi.org/10.1109/TFUZZ.2006.876331   [Google Scholar]
  4. Kim E and Lee H (2000). New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Transactions on Fuzzy Systems, 8(5): 523-534. https://doi.org/10.1109/91.873576   [Google Scholar]
  5. Kuppusamy S and Joo YH (2019). Nonfragile retarded sampled-data switched control of T–S fuzzy systems and its applications. IEEE Transactions on Fuzzy Systems, 28(10): 2523-2532. https://doi.org/10.1109/TFUZZ.2019.2940432   [Google Scholar]
  6. Lin C, Wang QG, and Lee TH (2005). Improvement on observer-based H control for T–S fuzzy systems. Automatica, 41(9): 1651-1656. https://doi.org/10.1016/j.automatica.2005.04.004   [Google Scholar]
  7. Lo JC and Lin ML (2004). Observer-based robust H control for fuzzy systems using two-step procedure. IEEE Transactions on Fuzzy Systems, 12(3): 350-359. https://doi.org/10.1109/TFUZZ.2004.825992   [Google Scholar]
  8. Petersen IR (1987). A stabilization algorithm for a class of uncertain linear systems. Systems & control letters, 8(4): 351-357. https://doi.org/10.1016/0167-6911(87)90102-2   [Google Scholar]
  9. Takagi T and Sugeno M (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1): 116-132. https://doi.org/10.1109/TSMC.1985.6313399   [Google Scholar]
  10. Tanaka K, Ikeda T, and Wang HO (1996). Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability, H control theory, and linear matrix inequalities. IEEE Transactions on Fuzzy Systems, 4(1): 1-13. https://doi.org/10.1109/91.481840   [Google Scholar]
  11. Tuan HD, Apkarian P, Narikiyo T, and Kanota M (2004). New fuzzy control model and dynamic output feedback parallel distributed compensation. IEEE Transactions on Fuzzy Systems, 12(1): 13-21. https://doi.org/10.1109/TFUZZ.2003.819828   [Google Scholar]
  12. Tuan HD, Apkarian P, Narikiyo T, and Yamamoto Y (2001). Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Transactions on Fuzzy Systems, 9(2): 324-332. https://doi.org/10.1109/91.919253   [Google Scholar]
  13. Wang HO, Tanaka K, and Griffin MF (1996). An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transactions on Fuzzy Systems, 4(1): 14-23. https://doi.org/10.1109/91.481841   [Google Scholar]
  14. Xiaodong L and Qingling Z (2003). New approaches to H∞ controller designs based on fuzzy observers for TS fuzzy systems via LMI. Automatica, 39(9): 1571-1582. https://doi.org/10.1016/S0005-1098(03)00172-9   [Google Scholar]
  15. Yoneyama J (2006). Robust H∞ control analysis and synthesis for Takagi–Sugeno general uncertain fuzzy systems. Fuzzy Sets and Systems, 157(16): 2205-2223. https://doi.org/10.1016/j.fss.2006.03.020   [Google Scholar]