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This article studies the problem of robust control design for a class of 
uncertain nonlinear systems using the Takagi–Sugeno (TS) fuzzy models. The 
objective of this study is to design state feedback and an observer-based 
controller such that the closed-loop system is asymptotically stable. For this 
purpose, sufficient conditions are derived, and the corresponding controllers 
are designed by solving a set of linear matrix inequalities (LMIs). The 
effectiveness of the proposed design approach is provided via numerical 
simulations for a permanent magnet synchronous motor (PMSM). 
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1. Introduction 

*It is well known that in the real world the 
physical systems and processes are generally 
nonlinear. Very recently, the Takagi–Sugano (TS) 
fuzzy models have known a huge reputation as an 
important approach to deal with nonlinear systems. 
The (TS) fuzzy models are qualified to describe a 
nonlinear system by a set of fuzzy IF-THEN rules in 
the form of local linear or affine models which are 
smoothly connected by fuzzy membership functions 
(Tanaka et al., 1996). Based on the sector non-
linearity methodology (Kuppusamy and Joo, 2019; 
Lo and Lin, 2004) a nonlinear model can be exactly 
represented by its equivalent (TS) one. Note that the 
Parallel Distributed Compensation (PDC)method 
combined with quadratic Lyapunov functions, 
provides a basis for the analysis and control design 
of (TS) fuzzy systems in view of the powerful 
conventional control theory (Kim and Lee, 2000; Cao 
and Frank, 2000). 

On the other hand, robustness is considered the 
most important requirement that should be achieved 
by the control system. Thus, the problem of robust 
control of uncertain systems has received a great 
deal of attention. The (TS) fuzzy models used to 
describe non-linear systems may be affected by 
uncertainties which can be provided from the 
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modeling procedure or also from the inherent 
uncertainties in the real system (Ding et al., 2006). 

Accordingly, the standard approach to cope with 
stability and stabilization problems for (TS) fuzzy 
systems consists in finding common quadratic 
Lyapunov functions that satisfy sufficient conditions, 
guaranteeing stability. These conditions are 
frequently expressed as Linear Matrix Inequality 
(LMI) constraints solvable through convex 
optimization techniques. Within this framework, 
very effective strategies have been suggested to 
overcome mathematical and numerical difficulties, 
promoting less-conservative conditions (Fang et al., 
2006; Tuan et al., 2004; 2001). 

On the other hand, since state variables are 
usually not completely available in practical control 
systems, output feedback or observer-based control 
is more feasible. Especially, the observer-based 
controller is widely accepted for its simple structure 
and explicit physical meaning. In this regard, the 
observer-based control output feedback control is 
probably well suited for feedback control, while the 
problem of designing observers for nonlinear 
systems has also been investigated by a number of 
scholars (Yoneyama, 2006; Lin et al., 2005; Takagi 
and Sugeno, 1985).  

Motivated by the aforementioned concerns, the 
objective of this paper is two folds. First, we will 
address the issue of robust stabilization for (TS) 
fuzzy model with norm bounded uncertainty. 
Sufficient conditions will be derived such the closed-
loop system is robust against the norm bounded 
uncertainty. Second, for the system with a partially 
measurable state, a robust observer-based controller 
will be designed. Moreover, for the task of control of 
a permanent magnet synchronous motor (PMSM) 

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:faisall6666@hotmail.com
https://doi.org/10.21833/ijaas.2022.05.004
https://orcid.org/0000-0002-6857-1948
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2022.05.004&amp;domain=pdf&amp


Alsaket et al/International Journal of Advanced and Applied Sciences, 9(5) 2022, Pages: 32-36 

33 
 

the effectiveness of the proposed method will be 
verified by simulation studies. 

2. System descriptions and preliminaries 

The (TS) fuzzy dynamic model is described by 
fuzzy IFTHEN rules, which locally represent linear 
input-output relations of nonlinear systems. A 
continuous fuzzy model with parameter 
uncertainties can be described by, 
 
𝐑𝑖: If 𝜃1 is 𝐹𝑖

1 and If 𝜃2 is 𝐹𝑖
2 ⋯ If 𝜃𝑠 is 𝐹𝑖

𝑠, Then 

{
𝑥̇(𝑡) = 𝐴𝑖(𝑡)𝑥(𝑡) + 𝐵𝑖𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑖𝑥(𝑡)

                                                        (1) 

 

where 𝑥(𝑡) ∈ ℝ𝑛, 𝑢(𝑡) ∈ ℝ𝑚 , and 𝑦(𝑡) ∈ ℝ𝑞  are the 
state vector, the input vector, and the output vector, 
respectively. 𝐴𝑖, 𝐵𝑖 , and 𝐶𝑖  are constant real matrices 
with appropriate dimensions; 𝑟 is the number of 

model rules; 𝜃(𝑡) = [𝜃1,𝑡 , 𝜃2,𝑡 , … , 𝜃𝑝,𝑡] is the premise 

variable vector and ℎ𝑖(𝜃(𝑡)) denotes the normalized 
membership function which satisfies ℎ𝑖(𝜃(𝑡)) ⩾
0, 𝑖 ∈ 𝕊 ≜ {1,2, … , 𝑟} and ∑𝑖

𝑟  ℎ(𝜃(𝑡)) = 1 for all 𝑡. 
Assume that 𝐴𝑖(𝑡) = 𝐴𝑖 + Δ𝐴𝑖 , is a time-varying 

system matrix. 𝐴𝑖, 𝐵𝑖 , and 𝐶𝑖  are constant matrices 
with appropriate dimensions. Parameter uncertainty 
Δ𝐴𝑖 is assumed to be of the form, 
 
Δ𝐴𝑖 = 𝑀𝑖Δ𝑁𝑖                                                                                   (2) 
 

where 𝑀𝑖 , 𝑁𝑖  and 𝑁𝑢𝑖  are known real constant 
matrices and Δ is an unknown time-varying matrix 
function satisfying, 
 
Δ𝑇Δ ⩽ 𝐼                                                                                             (3) 
 

The overall fuzzy model is inferred as follows: 
 

{
𝑥̇(𝑡) = ∑  𝑟

𝑖=1  ℎ𝑖(𝜃(𝑡)){𝐴𝑖(𝑡)𝑥(𝑡) + 𝐵2𝑖𝑢(𝑡)}

𝑦(𝑡) = ∑  𝑟
𝑖=1  ℎ𝑖(𝜃(𝑡))𝐶2𝑖𝑥(𝑡)

                       (4) 

 

where ℎ𝑖(𝜃) are the normalized weight functions 
defined by: 
 

ℎ𝑖(𝜃) =
∏  𝑠

𝑗=1  𝐹𝑗
𝑖(𝜃𝑗)

∑  𝑟
𝑖=1  ∏  𝑠

𝑗=1  𝐹𝑗
𝑖(𝜃𝑗)

,  𝑖 = 1,2, ⋯ , 𝑟 

 

and 𝐹𝑗
𝑖(𝜃𝑗) represents the membership degrees of 𝜃𝑗  

in the fuzzy set 𝐹𝑗
𝑖  . Note that the normalized weights 

ℎ𝑖(𝜃) satisfy, 
 
ℎ𝑖(𝜃) ⩾ 0, 𝑖 =  1,2, … , 𝑟  ∑  𝑟

𝑖=1  ℎ𝑖ℎ𝑖(𝜃)  =  1.                      (5) 
 

Lemma 2.1: (Petersen, 1987) Given matrices M, N, 
and P of appropriate dimensions and with P 
symmetrical, then, 
 
𝑃 + 𝑀𝛥𝑁 + 𝑁𝑇𝐹𝑇(𝑡)𝑀𝑇 < 0                                                     (6) 
 

for any 𝛥 satisfying ∆𝑇∆ ≤  𝐼, if and only if there 
exists a scalar 𝜖 >  0 such that, 
 
𝑃 + 𝜖𝑀𝑀𝑇  + 𝜖−1 𝑁𝑇𝑁 < 0                                                       (7) 
 

Lemma 2.2: For given matrices S >  0, P and R of 
appropriate dimensions the following two 
inequalities are equivalent, 

−𝑃 + 𝑅𝑇𝑆−1𝑅 < 0 ⟺ [−𝑃 𝑅𝑇

∗ −𝑆
] < 0                                    (8) 

 

Lemma 2.3: (Xiaodong and Qingling, 2003) The 
following inequality holds: 
 
∑  𝑟

𝑖=1 ∑  𝑟
𝑗=1 ℎ𝑖ℎ𝑗Υ𝑖𝑗 < 0                                                                 (9) 

if 
Υ𝑖𝑖 < 0, 𝑖 = 1,2, ⋯ , 𝑟                                                                   (10) 

2

𝑟−1
Υ𝑖𝑖 + Υ𝑖𝑗 + Υ𝑗𝑖 < 0,  𝑗 > 𝑖                                                    (11) 

 

For the purpose of control design, we consider 
different feedback schemes including fuzzy state 
feedback and fuzzy observer-based state feedback.  

3. State-feedback controller 

In this section, given a (TS) fuzzy model of a 
nonlinear plant in the form of 4, we address the 
design of a state feedback controller using the PDC 
approach. 
 
𝑢(𝑡) = ∑  𝑟

𝑖=1 ℎ𝑖(𝑡)𝐾𝑖𝑥(𝑡)                                                          (12) 
 

The closed-loop system of 4 and 12 is given by, 
 

{𝑥̇(𝑡) = ∑  𝑟
𝑖=1  ∑  𝑟

𝑗=1  ℎ𝑖ℎ𝑗{𝒜𝑖𝑗(𝑡)𝑥(𝑡)}                                   (13) 

 

where 
 

𝒜𝑖𝑗(𝑡)  = 𝒜𝑖𝑗 + Δ𝒜𝑖𝑗(𝑡),  𝒜𝑖𝑗 = 𝐴𝑖 + 𝐵𝑖𝐾𝑗

Δ𝒜𝑖𝑗(𝑡)  = 𝑀𝑖Δ𝑁𝑖
                  (14) 

 

Theorem 1: Closed-loop fuzzy system 13 is robustly 
stable, if there exist matrices P > 0 such that: 
 
Υ𝑖𝑖 < 0, 𝑖 ∈ 𝕊                                                                                 (15) 

2

𝑟−1
Υ𝑖𝑖 + Υ𝑖𝑗 + Υ𝑗𝑖 < 0,  𝑗 > 𝑖                                                    (16) 

 

where 
 

Υ𝑖𝑗 = (
𝑃𝒜𝑖𝑗 + 𝒜𝑖𝑗

𝑇 𝑃𝜖𝑃𝑀𝑖 𝑁𝑖

∗ −𝜖𝐼 0
∗ ∗ −𝜖𝐼

)                             (17) 

 

Proof: Under the conditions of the theorem, we first 
establish the stability of the system in 13. In the 
sequel, we choose a Lyapunov function candidate for 
system 13 as follows: 
 
𝑉(𝑥(𝑡)) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡)                                                               (18) 
 

Then, the derivative of Lyapunov function 18 
gives: 
 
𝑉̇(𝑥(𝑡)) = 2𝑥𝑇(𝑡)𝑃𝑥̇(𝑡)                                                            (19) 
 

Considering 13, we get, 
 

𝑉̇(𝑥(𝑡)) = 2𝑥𝑇(𝑡)𝑃∑𝑖=1
𝑟  ∑𝑗=1

𝑟  ℎ𝑖ℎ𝑗(𝒜𝑖𝑗 + Δ𝒜𝑖𝑗(𝑡))          (20) 
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Equivalently, the following inequality holds using 
Lemma 2.1, 
 
∑  𝑟

𝑖=1  ∑  𝑟
𝑗=1  ℎ𝑖ℎ𝑗(𝑃𝒜𝑖𝑗 + 𝒜𝑖𝑗

𝑇 𝑃                                                (21) 

+𝜖(𝑃𝑀𝑖)(𝑃𝑀𝑖)𝑇 + 𝜖−1𝑁𝑖
𝑇𝑁𝑖) < 0                                         (22) 

 

Then, according to the Schur complement, it is 
easy to see, 
 
∑  𝑟

𝑖=1  ∑  𝑟
𝑗=1  ℎ𝑖ℎ𝑗Υ𝑖𝑗                                                                      (23) 

= ∑  𝑟
𝑖=1  ∑  𝑟

𝑗=1  ℎ𝑖ℎ𝑗 (
𝑃𝒜𝑖𝑗 + 𝒜𝑖𝑗

𝑇 𝑃 𝜖𝑃𝑀𝑖 𝑁𝑖

∗ −𝜖𝐼 0
∗ ∗ −𝜖𝐼

) < 0   (24) 

 

Thus, the inequalities are verified according to 
Lemma 2.3. 

Theorem 2 Consider the fuzzy system 4 and the 
PDC fuzzy controller 12. If there exist matrices 𝑃 > 0 
and 𝑌𝑖  such that the following LMI is verified, 
 
Υ𝑖𝑖 < 0, 𝑖 ∈ 𝕊                                                                                 (25) 

2

𝑟−1
Υ‾𝑖𝑖 + Υ‾𝑖𝑗 + Υ‾𝑗𝑖 < 0,  𝑗 > 𝑖                                                    (26) 

 

where 
 

Υ‾𝑖𝑗 = (
𝐴𝑖𝑋 + 𝐵2𝑖𝑌𝑖 + (𝐴𝑖𝑋 + 𝐵2𝑖𝑌𝑖)𝑇 𝜖𝑀𝑖 𝑋𝑁𝑖

𝑇

∗ −𝜖𝐼 0
∗ ∗ −𝜖𝐼

)       (27) 

 

then, the closed-loop system 4 is robustly stable, and 
the feedback gains are given by 𝐾𝑖 = 𝑌𝑖𝑋

−1. 
 

Proof: Let 𝑋 = 𝑃−1. By performing the congruence 
transformation to 15, and 16 by diag (𝑋, 𝐼, 𝐼), 
inequalities 25 and 26 hold by setting 𝑌𝑖 = 𝐾𝑖𝑋. 

4. Observer-based controller 

The establishment of a PDC control law requires 
the measurement of the state vector. As this 
condition is rarely verified in practice, the use of a 
fuzzy observer is necessary for this case. The 
observer shares the same fuzzy sets as the model 
taken into account. The fuzzy observer is given by 
the following model, 
 

{

𝑥̇𝑐(𝑡)  = ∑  𝑟
𝑖=1  ℎ𝑖(𝜃(𝑡)){𝐴𝑖(𝑡)𝑥𝑐(𝑡) + 𝐵2𝑖𝑢(𝑡)

+𝐿𝑖(𝑦(𝑡) − 𝑦𝑐(𝑡))}

𝑦𝑐(𝑡)  = ∑  𝑟
𝑖=1  ℎ𝑖(𝜃(𝑡))𝐶2𝑖𝑥𝑐(𝑡)

              (28) 

 

where 𝑥𝑐(𝑡) is the state estimation of 𝑥(𝑡), 𝑦𝑐  is the 
observer output, 𝐿𝑖 ∈ ℝ𝑛×𝑞 and are the observer gain 
matrices. Suppose the following control law is used: 
 
𝑢(𝑡) = ∑  𝑟

𝑖=1 ℎ𝑖(𝑡)𝐾𝑖𝑥𝑐(𝑡)                                                         (29) 
 

The closed-loop system of 4 and 29 is shown as 
follows: 
 

{𝑥̇̃(𝑡) = ∑  𝑟
𝑖=1  ∑  𝑟

𝑗=1  ℎ𝑖ℎ𝑗{𝒜̃𝑖𝑗(𝑡)𝑥̃(𝑡)}                                   (30) 

 

where 
 
𝑥̃(𝑡) = [𝑥(𝑡)𝑒(𝑡)]𝑇 

𝒜̃𝑖𝑗(𝑡) = 𝒜̃𝑖𝑗 + ℳ̃𝑖𝑗Δ𝒩̃𝑖𝑗 

𝒜̃𝑖𝑗 = [
𝐴𝑖 + 𝐵2𝑖𝐾𝑗 −𝐵2𝑖𝐾𝑗

0 𝐴𝑖 − 𝐿𝑖𝐶2𝑖
] 

ℳ̃𝑖 = [
𝑀𝑖
0

] , 𝒩̃𝑖 = [𝑁𝑖0] 

 

Theorem 3 Closed-loop fuzzy system (30) is 
robustly stable, if there exist matrices 𝑃 > 0 such 
that: 
Υ̃𝑖𝑖 < 0, 𝑖 ∈ 𝕊                                                                                 (31) 

2

𝑟−1
Υ̃𝑖𝑖 + Υ̃𝑖𝑗 + Υ̃𝑗𝑖 < 0,  𝑗 > 𝑖                                                    (32) 

 

where 
 

Υ̃𝑖𝑗 = (
𝐀𝑖𝑗 + 𝐀𝑖𝑗

𝑇 𝜖𝐌𝑖 𝒩̃𝑖
𝑇

∗ −𝜖𝐼 0
∗ ∗ −𝜖𝐼

)                                              (33) 

 

where 
 

𝐀𝑖𝑗  = (
𝑍𝑖𝑗

1 ∗

−𝑃2(𝐵2𝑖𝐾𝑗)
𝑇

𝑍𝑖𝑗
2

)

𝑍𝑖𝑗
1  = (𝐴𝑖 + 𝐵2𝑖𝐾𝑗)

𝑇
+ 𝑃1(𝐴𝑖 + 𝐵2𝑖𝐾𝑗)

𝑍𝑖𝑗
2  = (𝑃2𝐴𝑖 − 𝐹𝑖𝐶2𝑗)

𝑇
+ 𝑃2𝐴𝑖 − 𝐹𝑖𝐶2𝑗

𝐌𝑖  = (
𝑃1𝑀𝑖

0
)

                             (34) 

 

Proof: By following the same lines to prove Theorem 
1, it is easy to verify that, 
 
∑  𝑟

𝑖=1  ∑  𝑟
𝑗=1  ℎ𝑖ℎ𝑗(𝑃̃𝒜̃𝑖𝑗 + 𝒜̃𝑖𝑗

𝑇 𝑃̃                                                (35) 

+𝜖(𝑃̃ℳ̃𝑖)(𝑃̃ℳ̃𝑖)
𝑇

+ 𝜖−1𝒩̃𝑖
𝑇𝒩̃𝑖) < 0                                     (36) 

 

By setting 𝑃̃ = [
𝑃1 0
0 𝑃2

], inequalities 31-32 hold 

using Lemma 2.3. 
Note that, there is no effective algorithm for 

solving the parameters 𝑃1𝑃2, 𝐾𝑖 , and 𝐿𝑖  in Theorem 3. 
However, we can use the two-step procedure to 
solve them. 

4.1. Design procedure 

1.  From Theorem 2, solve the state feedback 
controller 𝐾𝑖  

2.  Substitute 𝐾𝑖  into 31 and then solve the obtained 
LMIs to get 𝑃1𝑃2, and 𝐹𝑖  

3.  Design the observer gain by 𝐿𝑖 = 𝑃2
−1𝐹𝑖  

5. A simulation example 

The following nonlinear equations represent the 
model of a permanent magnet synchronous motor 
(PMSM) in the synchronously rotating dq reference 
frame: 
 

{

𝜔̇(𝑡) = 𝑘1𝑖𝑞𝑠(𝑡) − 𝑘2𝜔(𝑡) − 𝑘3𝑇𝐿

𝑖𝑞𝑠(𝑡) = −𝑘4𝑖𝑞𝑠(𝑡) − 𝑘5𝜔(𝑡) − 𝜔(𝑡)𝑖𝑑𝑠(𝑡) + 𝑘6𝑉𝑞𝑠(𝑡)

𝑖𝑑𝑠(𝑡) = −𝑘4𝑖𝑑𝑠(𝑡) + 𝜔(𝑡)𝑖𝑞𝑠(𝑡) + 𝑘6𝑉𝑑𝑠(𝑡)

  

                                                                                                         (37) 

where 𝜔 is the electrical rotor angular speed, 𝑖𝑞𝑠 and 

𝑉𝑞𝑠 are the quadrature current and voltage, 
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respectively, 𝑖𝑑𝑠  and 𝑉𝑑𝑠 are the direct current and 
voltage, respectively. 𝑇𝐿  denotes the load torque. The 
model parameters are defined, 
 

as 𝑘1 =
3𝑝2

8𝐽
𝜆𝑚, 𝑘2 =

𝐵

𝐽
, 𝑘3 =

𝑝

2𝐽
, 𝑘4 =

𝑅𝑠

𝐿𝑠
, , 𝑘5 =

𝜆𝑚

𝐿𝑠
 and 𝑘6 =

1

𝐿𝑠
. 

 

Let 𝑥(𝑡) = [𝑥1(𝑡)𝑥2(𝑡)𝑥3(𝑡)] = [𝑖𝑑 , 𝑖𝑞 , 𝑣]. As in 

Wang et al. (1996), the PMSM nonlinear model can 
be written as, 
 

{

𝑥̇1(𝑡) = −𝑥1(𝑡) + 𝑥2(𝑡)𝑥3(𝑡) + 𝑢(𝑡)

𝑥̇2(𝑡) = 𝑥2(𝑡) + 𝑥3(𝑡)(1.1 − 𝑥1(𝑡)) + 𝑢(𝑡) 

𝑥̇3(𝑡) = 5.46(𝑥2(𝑡) − 𝑥3(𝑡))
                  (38) 

 

Assume that 𝑥3(𝑡) ∈ [−𝑑, 𝑑]. The membership 
functions are ℎ1(𝑥3(𝑡)) = 0.5(1 + 𝑥3(𝑡)/𝑑) and 
ℎ2(𝑥3(𝑡)) = 1 − ℎ1(𝑥3(𝑡)). 

Then, based on the sector-nonlinear approach, 
the state equation of the PMSM can be represented 
by a TS fuzzy model with the following matrices: 
 

𝐴1 = [
−1 𝑑 0
−𝑑 −1 1.1
0 5.46 −5.46

] , , 𝐴2 = [
−1 −𝑑 0
𝑑 −1 1.1
0 5.46 −5.46

] (39) 

𝐵1 = 𝐵2 = [
1
1
0

]                                                                              (40) 

 

Assume that only the states 𝑥1(𝑡), and 𝑥3(𝑡) are 

measurable. Thus, 𝐶2 = [
1 0 0
0 0 1

] and an observer 

should be designed according to the procedure 
described above. Assume the parameters 

uncertainties are set as 𝑀𝑖 = [0.100]𝑇 , and 𝑀𝑖 =
[0.1, 00], for 𝑖 = 1,2. The first step is achieved by 
solving the LMIs in Theorem 2, a feasible solution is 
obtained with the corresponding control gain 
matrices defined as, 
 

𝐾1 = [−24.171 23.948 − 48.042]                                         (41) 
𝐾2 = [5.7142 − 6.27168.6818]                                              (42) 
 

Then, by substituting the gains 𝐾𝑖  into 31-32 the 
obtained LMIs can be solved with the following 
parameters: 
 

𝑃2 = [
5.0459             0.0027814             0.76974  

0.0027814              4.9042               0.0026528
0.76974           0.0026528                  6.9155

]       (43) 

𝐿1 = [
1.9637
8.2402

−3.5401
] ,         𝐿2 = [

0.41606
6.1053

−4.7555
]                                 (44) 

 

The simulation result gives a potent verification 
of the effectiveness of the suggested control scheme 
and shows its robustness in spite of the 
uncertainties. 

The simulation results are shown in Figs. 1-4 for 
an initial condition 𝑥(0)  = [1 5 − 4]𝑇 . Among them, 
Figs. 1-3 show the time responses of the system and 
observer states. The evolution of the control signal is 
plotted in Fig. 4. It can be seen that the system is 
stabilized regardless of uncertainties. Moreover, for 
the considered system with unmeasured states, the 
robust control problem can be achieved using the 
proposed control scheme, which is in concordance 
with the analysis in the paper. 

 

  
Fig .1: Trajectories of x1(t) and x̂c1(t) Fig. 2: Trajectories of x2(t) and x̂c2(t) 

  
Fig. 3: Trajectories of x3(t) and x̂c3(t) Fig. 4: Input trajectories 
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6. Conclusion 

This paper is concerned with the robust control 
for nonlinear systems described by TS fuzzy models. 
On the basis of Lyapunov theory, the principal 
aspects of the proposed control scheme lie in the 
design of an observer to estimate the unmeasured 
states and the synthesis of a fuzzy controller for the 
nonlinear system. Moreover, sufficient conditions 
have been developed in terms of strict LMI, to 
guarantee the robust stability of the closed-loop 
system. Finally, the proposed design method is 
illustrated throughout a PMSM model. 

Compliance with ethical standards 

Conflict of interest 

The author(s) declared no potential conflicts of 
interest with respect to the research, authorship, 
and/or publication of this article. 

References  

Cao YY and Frank PM (2000). Robust H∞ disturbance attenuation 
for a class of uncertain discrete-time fuzzy systems. IEEE 
Transactions on Fuzzy Systems, 8(4): 406-415.  
https://doi.org/10.1109/91.868947 

Ding B, Sun H, and Yang P (2006). Further studies on LMI-based 
relaxed stabilization conditions for nonlinear systems in 
Takagi–Sugeno's form. Automatica, 42(3): 503-508.  
https://doi.org/10.1016/j.automatica.2005.11.005 

Fang CH, Liu YS, Kau SW, Hong L, and Lee CH (2006). A new LMI-
based approach to relaxed quadratic stabilization of TS fuzzy 
control systems. IEEE Transactions on Fuzzy Systems, 14(3): 
386-397. https://doi.org/10.1109/TFUZZ.2006.876331 

Kim E and Lee H (2000). New approaches to relaxed quadratic 
stability condition of fuzzy control systems. IEEE Transactions 
on Fuzzy Systems, 8(5): 523-534.  
https://doi.org/10.1109/91.873576 

Kuppusamy S and Joo YH (2019). Nonfragile retarded sampled-
data switched control of T–S fuzzy systems and its 

applications. IEEE Transactions on Fuzzy Systems, 28(10): 
2523-2532. https://doi.org/10.1109/TFUZZ.2019.2940432 

Lin C, Wang QG, and Lee TH (2005). Improvement on observer-
based H∞ control for T–S fuzzy systems. Automatica, 41(9): 
1651-1656. 
https://doi.org/10.1016/j.automatica.2005.04.004  

Lo JC and Lin ML (2004). Observer-based robust H∞ control for 
fuzzy systems using two-step procedure. IEEE Transactions 
on Fuzzy Systems, 12(3): 350-359.  
https://doi.org/10.1109/TFUZZ.2004.825992 

Petersen IR (1987). A stabilization algorithm for a class of 
uncertain linear systems. Systems & control letters, 8(4): 351-
357. https://doi.org/10.1016/0167-6911(87)90102-2 

Takagi T and Sugeno M (1985). Fuzzy identification of systems 
and its applications to modeling and control. IEEE 
Transactions on Systems, Man, and Cybernetics, 15(1): 116-
132. https://doi.org/10.1109/TSMC.1985.6313399 

Tanaka K, Ikeda T, and Wang HO (1996). Robust stabilization of a 
class of uncertain nonlinear systems via fuzzy control: 
Quadratic stabilizability, H∞ control theory, and linear matrix 
inequalities. IEEE Transactions on Fuzzy Systems, 4(1): 1-13. 
https://doi.org/10.1109/91.481840 

Tuan HD, Apkarian P, Narikiyo T, and Kanota M (2004). New fuzzy 
control model and dynamic output feedback parallel 
distributed compensation. IEEE Transactions on Fuzzy 
Systems, 12(1): 13-21.  
https://doi.org/10.1109/TFUZZ.2003.819828 

Tuan HD, Apkarian P, Narikiyo T, and Yamamoto Y (2001). 
Parameterized linear matrix inequality techniques in fuzzy 
control system design. IEEE Transactions on Fuzzy Systems, 
9(2): 324-332. https://doi.org/10.1109/91.919253 

Wang HO, Tanaka K, and Griffin MF (1996). An approach to fuzzy 
control of nonlinear systems: Stability and design issues. IEEE 
Transactions on Fuzzy Systems, 4(1): 14-23.  
https://doi.org/10.1109/91.481841 

Xiaodong L and Qingling Z (2003). New approaches to H∞ 
controller designs based on fuzzy observers for TS fuzzy 
systems via LMI. Automatica, 39(9): 1571-1582.  
https://doi.org/10.1016/S0005-1098(03)00172-9 

Yoneyama J (2006). Robust H∞ control analysis and synthesis for 
Takagi–Sugeno general uncertain fuzzy systems. Fuzzy Sets 
and Systems, 157(16): 2205-2223.  
https://doi.org/10.1016/j.fss.2006.03.020 

 

https://doi.org/10.1109/91.868947
https://doi.org/10.1016/j.automatica.2005.11.005
https://doi.org/10.1109/TFUZZ.2006.876331
https://doi.org/10.1109/91.873576
https://doi.org/10.1109/TFUZZ.2019.2940432
https://doi.org/10.1016/j.automatica.2005.04.004
https://doi.org/10.1109/TFUZZ.2004.825992
https://doi.org/10.1016/0167-6911(87)90102-2
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1109/91.481840
https://doi.org/10.1109/TFUZZ.2003.819828
https://doi.org/10.1109/91.919253
https://doi.org/10.1109/91.481841
https://doi.org/10.1016/S0005-1098(03)00172-9
https://doi.org/10.1016/j.fss.2006.03.020

	Robust fuzzy control for non-linear systems with uncertainties: A Takagi-Sugeno model approach
	1. Introduction
	2. System descriptions and preliminaries
	3. State-feedback controller
	4. Observer-based controller
	4.1. Design procedure

	5. A simulation example
	6. Conclusion
	Compliance with ethical standards
	Conflict of interest
	References


