International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 9, Issue 2 (February 2022), Pages: 136-141

----------------------------------------------

 Original Research Paper

 Title: Fractional formulation of Podolsky Lagrangian density

 Author(s): Amer D. Al-Oqali *

 Affiliation(s):

 Department of Physics, Mutah University, Al-Karak, Jordan

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-2254-0019

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2022.02.015

 Abstract:

Lagrangians which depend on higher-order derivatives appear frequently in many areas of physics. In this paper, we reformulate Podolsky's Lagrangian in fractional form using left-right Riemann-Liouville fractional derivatives. The equations of motion are obtained using the fractional Euler Lagrange equation. In addition, the energy stress tensor and the Hamiltonian are obtained in fractional form from the Lagrangian density. The resulting equations are very similar to those found in classical field theory. 

 © 2022 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Podolsky's Lagrangian density, Fractional derivatives, Lagrangian formulation, Hamiltonian formulation

 Article History: Received 25 September 2021, Received in revised form 18 December 2021, Accepted 21 December 2021

 Acknowledgment 

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

 Al-Oqali AD (2022). Fractional formulation of Podolsky Lagrangian density. International Journal of Advanced and Applied Sciences, 9(2): 136-141

 Permanent Link to this page

 Figures

 No Figure 

 Tables

 No Table  

----------------------------------------------    

 References (25)

  1. Abdel-Salam EAB, Nouh MI, and Elkholy EA (2020). Analytical solution to the conformable fractional Lane-Emden type equations arising in astrophysics. Scientific African, 8: e00386. https://doi.org/10.1016/j.sciaf.2020.e00386   [Google Scholar]
  2. Alawaideh Y M, Hijjawi RS, and Khalifeh JM (2020). Reformulation of Degasperis-Procesi field by functional derivatives. Jordan Journal of Physics, 13(1): 67–72. https://doi.org/10.47011/13.1.6   [Google Scholar]
  3. Al-Oqali AD, Al-khamiseh BM, Jaradat EK, and Hijjawi RS (2016). The linear Sigma model Lagrangian density : Fractional formulation. Canadian Journal of Pure and Applied Sciences, 10(1): 3803–3807.   [Google Scholar]
  4. Asjad MI, Faridi WA, Jhangeer A, Abu-Zinadah H, and Ahmad H (2021). The fractional comparative study of the non-linear directional couplers in non-linear optics. Results in Physics, 27: 104459. https://doi.org/10.1016/j.rinp.2021.104459   [Google Scholar]
  5. Bertin MC, Pimentel BM, Valcárcel CE, and Zambrano GER (2017). Hamilton-Jacobi formalism for Podolsky’s electromagnetic theory on the null-plane. Journal of Mathematical Physics, 58(8): 082902. https://doi.org/10.1063/1.4999846   [Google Scholar]
  6. Bogdan K and Byczkowski T (2000). Potential theory of Schrodinger operator based on fractional Laplacian. Probability and Mathematical Statistics, 20(2): 293–335.   [Google Scholar]
  7. Cattani C, Martin E, Li M, Liao Z, and Hooshmandasl M (2014). Scaling, self-similarity, and systems of fractional order. Abstract and Applied Analysis, 2014: 843018. https://doi.org/10.1155/2014/843018   [Google Scholar]
  8. Chen D, Sun H, and Zhang Y (2013). Fractional dispersion equation for sediment suspension. Journal of Hydrology, 491: 13–22. https://doi.org/10.1016/j.jhydrol.2013.03.031   [Google Scholar]
  9. Dai J (2021). Stability and Hamiltonian BRST-invariant deformations in Podolsky’s generalized electrodynamics. Nuclear Physics B, 971: 115497. https://doi.org/10.1016/j.nuclphysb.2021.115497   [Google Scholar]
  10. Diab AA, Hijjawi RS, Asad JH, and Khalifeh JM (2013). Hamiltonian formulation of classical fields with fractional derivatives: Revisited. Meccanica, 48(2): 323–330. https://doi.org/10.1007/s11012-012-9603-9   [Google Scholar]
  11. Gutiérrez-Vega JC (2007a). Fractionalization of optical beams: I. Planar analysis. Optics Letters, 32(11): 1521–1523. https://doi.org/10.1364/OL.32.001521   [Google Scholar] PMid:17546175
  12. Gutiérrez-Vega JC (2007b). Fractionalization) of optical beams: II. Elegant Laguerre-Gaussian modes. Optics Express, 15(10): 6300–6313. https://doi.org/10.1364/OE.15.006300   [Google Scholar] PMid:19546934
  13. He JH (2014). A tutorial review on fractal space-time and fractional calculus. International Journal of Theoretical Physics, 53(11): 3698-3718. https://doi.org/10.1007/s10773-014-2123-8   [Google Scholar]
  14. Herzallah MAE and Baleanu D (2014). On fractional order hybrid differential equations. Abstract and Applied Analysis, 2014: 389386. https://doi.org/10.1155/2014/389386   [Google Scholar]
  15. Herzallah MAE, Muslih SI, Baleanu D, and Rabei EM (2011). Hamilton–Jacobi and fractional like action with time scaling. Nonlinear Dynamics, 66(4): 549–555. https://doi.org/10.1007/s11071-010-9933-x   [Google Scholar]
  16. Jaradat EK (2017). Hamiltonian formulation for single fluid flows with Caputo's definition. Science International, 29(3): 541-543.   [Google Scholar]
  17. Kruglov SI (2010). Solutions of Podolsky's electrodynamics equation in the first-order formalism. Journal of Physics A: Mathematical and Theoretical, 43: 245403. https://doi.org/10.1088/1751-8113/43/24/245403   [Google Scholar]
  18. La Nave G, Limtragool K, and Phillips PW (2019). Colloquium: Fractional electromagnetism in quantum matter and high-energy physics. Reviews of Modern Physics, 91(2): 021003. https://doi.org/10.1103/RevModPhys.91.021003   [Google Scholar]
  19. Lazar M (2019). Green functions and propagation in the Bopp–Podolsky electrodynamics. Wave Motion, 91: 102388. https://doi.org/10.1016/j.wavemoti.2019.102388   [Google Scholar]
  20. Lazar M and Leck J (2020). Second gradient electromagnet statics: Electric point charge, electrostatic and magneto static dipoles. Symmetry, 12(7): 1104. https://doi.org/10.3390/sym12071104   [Google Scholar]
  21. Magomedov RA, Meilanov RR, Meilanov RP, Akhmedov EN, Beybalaev VD, and Aliverdiev AA (2018). Generalization of thermodynamics in of fractional-order derivatives and calculation of heat-transfer properties of noble gases. Journal of Thermal Analysis and Calorimetry, 133(2): 1189–1194. https://doi.org/10.1007/s10973-018-7024-2   [Google Scholar]
  22. Muslih SI and Baleanu D (2005). Formulation of Hamiltonian equations for fractional variational problems. Czechoslovak Journal of Physics, 55(6): 633–642. https://doi.org/10.1007/s10582-005-0067-1   [Google Scholar]
  23. Novikov VV and Voitsekhovskii KV (2000). Viscoelastic properties of fractal media. Journal of Applied Mechanics and Technical Physics, 41(1): 149–158. https://doi.org/10.1007/BF02465249   [Google Scholar]
  24. Podolsky B and Schwed P (1948). Review of a generalized electrodynamics. Reviews of Modern Physics, 20(1): 40-50. https://doi.org/10.1103/RevModPhys.20.40   [Google Scholar]
  25. Yu R and Wang T (2017). Bertrand’s theorem and virial theorem in fractional classical mechanics. The European Physical Journal Plus, 132: 386. https://doi.org/10.1140/epjp/i2017-11639-9   [Google Scholar]