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Lagrangians which depend on higher-order derivatives appear frequently in
many areas of physics. In this paper, we reformulate Podolsky's Lagrangian
in fractional form using left-right Riemann-Liouville fractional derivatives.
The equations of motion are obtained using the fractional Euler Lagrange
equation. In addition, the energy stress tensor and the Hamiltonian are
obtained in fractional form from the Lagrangian density. The resulting
equations are very similar to those found in classical field theory.
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1. Introduction

Fractional calculus is a branch of mathematics
that deals with fractional derivatives and integrals of
any order. In the last two decades, it has been
increasingly popular in a variety of sectors of science
and engineering (Alawaideh et al,, 2020; Al-Oqali et
al., 2016; Herzallah and Baleanu, 2014; Herzallah et
al,, 2011; Jaradat, 2017; Muslih and Baleanu, 2005).
Fractional derivatives have been used in a variety of
fields, including classical mechanics (Yu and Wang,
2017), scaling phenomena (Cattani et al, 2014),
fractal spacetime (He, 2014), dispersion and
turbulence (Chen et al., 2013), astrophysics (Abdel-
Salam et al, 2020), potential theory (Bogdan and
Byczkowski, 2000), viscoelasticity (Novikov and
Voitsekhovskii, 2000), electrodynamics (La Nave et
al,, 2019), optics (Asjad et al., 2021; Gutiérrez-Vega,
2007a; 2007b), and thermodynamics (Magomedov
et al, 2018). Fractional derivatives research dates
back to Leibniz, and it is still going strong today.

Higher derivative field theories have been gaining
popularity in recent years. Many models, including
renormalizable quantum gravity, Podolsky's
generalized electrodynamics, the Lee-Wick model,
and others, include higher derivative field equations.
Higher derivative theories are being studied for a
variety of reasons, including improving
renormalization qualities and removing ultraviolet
divergences (Kruglov, 2010; Dai, 2021). Podolsky’s
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theory was introduced in the early 1940s by Bopp
and Podolsky (Lazar and Leck, 2020). In order to
avoid singularities in electromagnetic fields and to
have a finite and positive self-energy of point
charges, Bopp and Podolsky proposed a gradient
theory representing a classical generalization of
Maxwell electrodynamics towards generalized
electrodynamics with fourth-order linear field
equations (Lazar, 2019).

The purpose of this research is to reformulate the
Lagrangian, proposed by Podolsky, in fractional form
and to obtain conjugate momenta and energy stress
tensor.

The following sections of the manuscript are
organized as follows: In the next section, we briefly
define the Riemann-Liouville fractional derivative.
The fractional Euler-Lagrange equations are
obtained in section three. In section four, the energy-
momentum tensor is constructed, and the
Hamiltonian is obtained. The fifth section contains
the conclusions.

2. Riemann-Liouville fractional derivative

The left and right Riemann-Liouville fractional
derivatives are defined as follows (Diab et al.,, 2013):

e The left Riemann-Liouville fractional derivative,

DO = (2)" [t -0t f(odr ©)

'(n—a)

e The right Riemann-Liouville fractional derivative,

DL = 1 (- O [l - oot e )

where o represents the order of the derivative such
that n—1<a<n and T represents the Euler’s
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Lagrange gamma function. If a is an integer, these
derivatives are defined in the usual sense, i.e.,

d

DO = (-9)" a=12,..

DO = (3) 4 ®)

3. Formulation

Assume that the Lagrangian L is a function of the
potential A, and its first and second derivatives:

L=1(Aw D5 A, »DL, ,D)Ac) )

where A, are functions of space-time coordinates
Xq = Xq,X3, X3, X4. The variational equation:

SW=6[[LVdt=0,dV =dx,dx,d x3,

orW =6 [[LdQ=0, d0d=dVdx,=0 (5)
this results in the field equation.

oL P oL % P oL —

24, b¥xy (6( bD;’“AA)> + beu beTl 3( bD;;ctﬂ bDfrlAz,) =0 (6)
as new coordinates, we introduce:

4o = Agand Qg = ano Ag (7)

and define the momenta conjugate to g, and Q, by,

oL X oL
Pap =775~ bvDx |\ 77—/ (8)
“* a0, D;I:,,Aa) u (6( »DE, b D,fﬁ&;))
and,
Py = = 9)

6( bDfo bDfoA“)

respectively. The Hamiltonian can be described as
follows:

H=—L+pe »Db Ag+
aL B

B
bDx, »D
a( » DY bDf:OAa) *o

o Aa (10)
Using Egs. 7 and 9 the time derivatives of the
coordinates, anO A, and bDfo bDfo A,, can be

removed from the Hamiltonian. Then,

H=H (Aa,paﬁ, »D& Ag »DE ,,ij A,

»DE Ag, Py ,DE bDfoAa). (11)

Taking the differentials of Eqs. 10 and 11 and
equating coefficients we get:

oH ar oL
o( w0l o wDF Aq) T Ve

» DX, <m (12a)
o ;P,% ) o ,,i% ) (12b)
a( ,i)lj?i Aq) 7o bi)f‘;‘i Aq) (12¢)
a( bD;;Hbe]_A,Z) - a( ,,D,?iaLbij Aa> (12d)
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and,
O0H _ B 0H _ B B
a(Pa) - b¥xy, a TP‘Z) - bDXD beDAa (13)

It may now be concluding from Egs. 8, 9, 12, 13,
and 6 that:

oH B @ oL

oot~ Pl PR o
I3 _ __oH __onx
bDXo Pa = a( bD,‘fiAa)-l_ b gi 6( bD’?iA“)
oH
DY pDY ———— 15
bVx; blVx; a( bDE, bijAa) (15)
pDy P = 6( bDf?iAa) oD%, 6( bD5; bDfoA“) (e

The variational equation can be used to calculate
the energy-momentum stress tensor.

sW=ff (L8 — bDE, »DE, AaPay —
bDE, bDE, DS, Aq Pary ) dS,5%, (A7)
where,

Pap = a(,,aT%?)_ bDfMW (18)
Pty = 500z, oo 1) (19)
From the definition of the total momentum By
W = P,6x,. (20)

By comparison with Eq. 17:
B = me,dSv (21

where the energy-momentum tensor T,,,, is given by,

Tuw = L8y = (D% Aa) Py = 5D%, b DI A) Pay
(22)

4. Fractional Lagrangian density
Let us consider the Lagrangian proposed by

Podolsky (Bertin et al.,, 2017; Podolsky and Schwed,
1948):

1 2
L=~ FogF —= DX F D} Fy, (23)
where the field quantities F,z = ,Dy Ag—

bD;‘ﬁ A, and a being a parameter with a

dimension of the inverse of mass.

Using the definition of the left Riemann-Liouville
fractional derivative, the fractional Lagrangian
density takes the form:

1
£=-1 gaagﬁv[ bD¥ Ag— D%, Aa] [ ,DZ A, -
DX Ag] = googh* [ ,D, wDL A, —
bVx, So 299 b¥xpg bPxs v
bD)]C(B prlc)vAa] gyf [ bDJ}é prlc)aAy - bD’}C{f bD;‘c)yAa]-
(24)
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But
equation is given by,

»Dy, = ( Dy

Xt

»Df ). The Euler Lagrange

or p oL w np aL _
o PP (7(')( >> e e R gy
0. (25)
First term:

aL

s =0 (26)

Second term:

p oL -
2D, <a( wfm)) -
—2 g%ogh (o8 5§58 57) (D% Ay~ oD Ag) +
bDE, Ag — 5D, Ad) (8% 8703 67)) 27)

or,

oL
o0, (7)== D a = 07 a) = =

(28)
Then,
o oL - _ P pud
beu <6( bD;;ctqu)> be” FE-. (29)
Third term:
p¥ ,pP — 2%
bTxu by 5( D3, bD)?nA/I)
2 P4 P ao PV B cogv
- beu beW [g ) (5[/. 617 51 -
5861 8F) DX Fuy +  oDg,FF gvé (55 856) —
3
se6y 55 (30)
=—a? [ ,Df D yD,F — 11, D 8 (31)
Using the identity, see Appendix A,
I,D,‘;7 D F1E = 0.
Therefore,
DX ,DP oL = q? Dk F# 32
bYxy b =a xg . ( )

x
K 5( D3, bD)?nA/I)

Substituting Egs. 26, 29, and 32 in Eq. 25, we get

D,’C’#F’M +a?0,Df F*F =0 (33)
change (8 to u we obtain,
(1-a®7) ,DEFH =0 (34)

5. Energy-momentum tensor

To evaluate the energy-momentum tensor the
following quantities p,z and P, are required
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g b DX, »DEyAa
Pap = —FP% — o D [ gt g (shofog -
556058) (5 D% 5 DLA, ~
» Dy b DivAq) %ZQMQBV( b Da‘c)ﬁ » DL Ay —
»Df, v DEAs) g (3E075 -

stsfsg)] (35)

we are able to recast the above equation as follows:

Pap = —FF* +a* , Df [g** , DGFP, —

gP* DR F |

=—FPe4a? ,Dg[ ,DNFFY — |, DOF]
=—FP+a> ,Dg| ,D4( ,D0A%— ,Dk4P)|
=—FP* +q> , DY ,DHFFe

= (1 - a?0)F*F (36)

on the other hand, the total momentum can be
obtained as follows:

_ oL —_ 1 2 ac Bv(sAsBsu _

Puap = 5 bDE 5DE A0 2499 (6[38‘761’
. i

A806L) Doy — 2a® Dy Febgrt (spstsl -
stsfst) (37)
the above equation can be written as:

. i
=—sa?[( , DB FP + DL FFF) g -

b DLW + DY FuP) gP|

or,
Pup = —a%| , DFFYgi — , DY F# ghA| (38)

replacing 4 by § in the previous equation we get:

Pup = —a?[ o DEFMgPE— Dy FHY Pl (39)

Thus the energy-momentum tensor T, is given by:

Tp.v = L‘Sp.v - ( b D)lccuAa) Py — ( b D)lccu b Darcl,lAa) Poav
(40)
or,

= L8y — pDE A, (1—a®DF™ +

az Dzlccu , DQTC"AA(Z( b D;;;Flygva - D,‘;;Fayg”)
= L8y — pDE AL (1= a®DF™ +

a2 ,D( ,DEA = ,DRAL)| ,DEFY.

The above equation can be simplified to:

Tyy = L8y — 1 DE,Ag(1— a?)F% +

a* , DY F'y oDZF®. (41)

The Hamiltonian is given by:
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H=To=L— ,DEA,(1—a?)F™+
a’? ,DEFEY , DYF™. (42)
Because of the ambiguity in the partial

differential equation with regard to 4,. Care must be
taken while computing the momenta canonically
conjugate to A, and A4,.

H=L- ,DfA,(1—a’)F*+
a? , DiFao 1 DR FY. (43)
We have from Eq. 18:
- k(9L ) _
Pa = 0( b DDICCOAOI) b DXO (6( bDJ,go b D’ICCOA“))
aL oL
» DX, (44)

6( » DX, bD:lfjAa) 6( bD!c(]- bDfoAa) '

Using Egs. 1, 2, 3, and 4 in Appendix B we get,

pa=F+a*( ,Df ,DEFYgI*+
»Df, »DEFFY — Dk, D FaY).

After some algebraic manipulations, we are
capable of arriving at:

pa=F+a*( ,Df ,DEFYgi* -

» DY, DY F"‘V) (45)

thus we obtain:

— F00 | 2 K w Oy ;0

Po=F +a( b Dx; » Dy, FVg" —
K w 0

b DE, 5 DEF)
= _g2 k [0y — _g2 K k 00
=-a> ,Df ,DYF =—a*> ,D ,DEF®-
2 k k [0j
a> , Dk ,DEFY

— 2 k k 70j
=—a? ,Df ,DEFY

(46)

a* , Df bD)IcchjO (47)
and

P1=F10+a2( bDalc(j bD:(?)yFoygﬂ_ bDJ’c((, bDJ(;;Fly)

(48)
=F+a?( ,Df ,DYFY— ,DE ,DYFY)
=Pt ,Dg( ,DFY — , DEFY) (49)
using the identity:

» DMFW +  , DS FY 4+ DIRFM =0 (50)
WithA=Lu=0andv =y
» DSFOY +  ,DSFY 4+, DGF =0 (51)
Then,
p DRF® —  , D&MFY = —  DAFY
Eq. 49 becomes:
pl=F10—a2 bDJ(;i, bD,(é;FIO
= (1 —a?0)FW (52)
similarly,
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_ oL _ .2 P OB a0 _
Fa =508, oohan - @ (aDfF%g

« D5, FF) (53)
or,
Po=—a*( oDLFg®— DI F%)=0 (54)
Pj = _az( anﬁFoﬁgjO ~ a Dch)ﬁFjﬁ) =
—a* D FIP.

(55)

In vector notation, these quantities become i.e.
when (@ — 1):

5 2 5 o

po=-a* ,Df ,DEF°="V-E (56)
pj =1 - a?)F =(1-a?)E (57)
Py =0, =a* , D FF (58)
S = = 10F
P=a?(VxB-1%) (59)
6. Conclusion

In various areas of physics, Lagrangians
depending on higher-order derivatives appear

regularly. Using special properties of the higher
derivative terms, advances in the understanding of
astrophysical and cosmological behaviors were
considered feasible. In this work, we have
considered the Lagrangian density of higher
derivative generalized electrodynamics proposed by
Podolsky and obtained the equations of motion, the
energy stress tensor, the canonical Momentum, and
the Hamiltonian. A major point in this study is that
we used the energy stress tensor to evaluate the
Hamiltonian of the system. As a special case, for the
equation of motion in agreement with the classical
results.

Appendix A. Proof of field- strength tensor
identity

Prove that bDfn bD,‘;;,F"ﬁ = 0, We have:

bDf:,, bch‘;;F"ﬁ = bDf:ﬂ »Dx ( pD&AP — ,DEAT) =

DY, wDE D AP — DY ,Dg D A"

= D7 AP — DY LA
Change 7 to 8 in the second term, we get:

DY, pDE,FP = 0. (A1)

Appendix B. Calculation of conjugate momenta

We can rewrite Eq. 44 as:

First term:

oL
—— = F
6( bD:}crOAa)

(B1)

Second term:
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aL
B( bD)’fco hDL{UAP)
1 0 P 0 P
~a? , DI FPgré(50636) — 506765).

1
= —2a2ge gl (606980 — 895265) D Fuy —

After some mathematical manipulation we have:

aL
B( bD)’fco hDL{UAP)
» DX PP (97068 — 9°°6%)
=—2a%(g% ,DHFo — DY FPy+ , DEFgr —

b D;?BFPY)

=-a?| ,DgFrg — ,DgF]

1
=—5a*(g"g% - g"g*) » Diky +

Then,

ar
D (———=]=—a?| ,DE ,DgF -
b Px b ~x b “x.
° a( b DX, bD!foAp) 0 4

k [}
»DE, o DL

X or
b Dx

00( 0k, »DEAq)

» DY, DEF]

—_ 2 k w 0
=-a?[ ,Df ,DYF -

(B2)

Third Term:
oL
a( »DE b D,’nga)

. _
Za? , DR FeP gvé(526)60 — 626y67).

. _ :
= —2a?g o gP (696,50 — 506160) Dy Fuy —

After some mathematical manipulation, we get,

oL _ 1 2 cqaig0p _ sap,0) w

o( o0k o0kAd) 2 [(g 9% —9%9") »DiFay +
b DL,F g (98] — %187

S @ g 10p P 1B 400 —
a( , 0¥ 5Dk 4q) za[ b DB g™+ p Dy g ]
—a®> ,DYF.

(B3)

Fourth term:

oL

B( bD),fj bD!c(gAp)
=—1a%[ ,D4Fo g’ + g7 ,DgF|

-2

=—3a?[g0g |, DGFyy+ DY FPgISY)

It follows that:

ar ®

=  —_g? 0B 4ip
=-a DR F°F glP.
a( »D¥ 5Dk ) b Zxp

(B4)
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