International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 8, Issue 6 (June 2021), Pages: 48-56

----------------------------------------------

 Original Research Paper

 Title: Fuzzy soft set theory applied to commutative ideals of BCK-algebras

 Author(s): G. Muhiuddin 1, *, D. Al-Kadi 2, Habib Harizavi 3, Amjad S. Albjedi 1

 Affiliation(s):

 1Department of Mathematics, University of Tabuk, Tabuk, Saudi Arabia
 2Department of Mathematics and Statistic, Taif University, Taif, Saudi Arabia
 3Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-5596-5841

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2021.06.006

 Abstract:

In the present paper, we apply the fuzzy soft set theory to commutative ideals of BCK-algebras. In fact, the notion of fuzzy soft commutative ideals over BCK-algebras is introduced, and related properties are investigated. Relations between fuzzy soft ideals and fuzzy soft commutative ideals are discussed, and conditions for a fuzzy soft ideal to be a fuzzy soft commutative ideal are provided. The “AND” operation, “extended intersection” and “union” of fuzzy soft (commutative) ideals are studied. Furthermore, characterizations of fuzzy soft (commutative) ideals are considered. 

 © 2021 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: BCK/BCI-algebra, (Commutative) ideal, Fuzzy (commutative) ideal, Fuzzy soft set, Fuzzy soft (commutative) ideal

 Article History: Received 19 November 2020, Received in revised form 20 February 2021, Accepted 22 February 2021

 Acknowledgment 

The authors would like to express their sincere gratitude to anonymous reviewers for their valuable comments and helpful suggestions which have greatly improved the content of this paper.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

  Muhiuddin G, Al-Kadi D, and Harizavi H et al. (2021). Fuzzy soft set theory applied to commutative ideals of BCK-algebras. International Journal of Advanced and Applied Sciences, 8(6): 48-56

 Permanent Link to this page

 Figures

 No Figure

 Tables

 No Table 

----------------------------------------------

 References (38)

  1. Ali MI, Feng F, Liu X, Min WK, and Shabir M (2009). On some new operations in soft set theory. Computers and Mathematics with Applications, 57(9): 1547-1553. https://doi.org/10.1016/j.camwa.2008.11.009   [Google Scholar]
  2. Al-Roqi AM, Muhiuddin G, and Aldhafeeri S (2017). Normal unisoft filters in-algebras. Cogent Mathematics, 4(1): 1383006. https://doi.org/10.1080/23311835.2017.1383006   [Google Scholar]
  3. Aygünoǧlu A and Aygün H (2009). Introduction to fuzzy soft groups. Computers and Mathematics with Applications, 58(6): 1279-1286. https://doi.org/10.1016/j.camwa.2009.07.047   [Google Scholar]
  4. Jun YB, Lee KJ, and Park CH (2010). Fuzzy soft set theory applied to BCK/BCI-algebras. Computers and Mathematics with Applications, 59(9): 3180-3192. https://doi.org/10.1016/j.camwa.2010.03.004   [Google Scholar]
  5. Jun YB, Muhiuddin G, Ozturk MA, and Roh EH (2017a). Cubic soft ideals in BCK/BCI-algebras. Journal of Computational Analysis and Applications, 22(5): 929-940.   [Google Scholar]
  6. Jun YB, Ozturk MA, and Muhiuddin G (2017b). A novel generalization of fuzzy subsemigroups. Annals of Fuzzy Mathematics and Informatics, 14(4): 359-370.   [Google Scholar]
  7. Jun YB, Song SZ, and Muhiuddin G (2014). Concave soft sets, critical soft points, and union-soft ideals of ordered semigroups. The Scientific World Journal, 2014: 467968. https://doi.org/10.1155/2014/467968   [Google Scholar] PMid:25405223 PMCid:PMC4219135
  8. Jun YB, Song SZ, and Muhiuddin G (2016). Hesitant fuzzy semigroups with a frontier. Journal of Intelligent and Fuzzy Systems, 30(3): 1613-1618. https://doi.org/10.3233/IFS-151869   [Google Scholar]
  9. Maji PK, Biswas R, and Roy AR (2003). Soft set theory. Computers and Mathematics with Applications, 45(4-5): 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6   [Google Scholar]
  10. Maji PK, Roy AR, and Biswas R (2002). An application of soft sets in a decision making problem. Computers and Mathematics with Applications, 44(8-9): 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X   [Google Scholar]
  11. Maji RK, Biswas R, and Roy AR (2001). Fuzzy soft sets. Journal of Fuzzy Mathematics, 9(3): 589-602.   [Google Scholar]
  12. Meng J and Jun YB (1994). BCK-algebras. Kyung Moon Sa Co., Seoul, Korea.   [Google Scholar]
  13. Molodtsov D (1999). Soft set theory-First results. Computers and Mathematics with Applications, 37(4-5): 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5   [Google Scholar]
  14. Muhiuddin G (2019). Cubic interior ideals in semigroups. Applications and Applied Mathematics, 14(1): 463-474.   [Google Scholar]
  15. Muhiuddin G and Aldhafeeri S (2019). N-soft p-ideals of BCI-algebras. European Journal of Pure and Applied Mathematics, 12(1): 79-87. https://doi.org/10.29020/nybg.ejpam.v12i1.3343   [Google Scholar]
  16. Muhiuddin G and Al-Kadi D (2021). Hybrid quasi-associative ideals in BCI-algebras. International Journal of Mathematics and Computer Science, 16: 729-741.   [Google Scholar]
  17. Muhiuddin G and Al-Roqi AM (2014). Cubic soft sets with applications in BCK/BCI-algebras. Annals of Fuzzy Mathematics and Informatics, 8(2): 291-304. https://doi.org/10.1155/2014/458638   [Google Scholar] PMid:24895652 PMCid:PMC4034581
  18. Muhiuddin G and Al-Roqi AM (2015a). Unisoft Filters in R0-algebras. Journal of Computational Analysis and Applications, 19(1): 133-143.   [Google Scholar]
  19. Muhiuddin G and Al-Roqi AM (2016). Classifications of (alpha, beta)-fuzzy ideals in BCK/BCI–algebras. Journal of Mathematical Analysis, 7(6): 75-82.   [Google Scholar]
  20. Muhiuddin G and Al-Roqi AM (2018). Regular hesitant fuzzy filters and MV-hesitant fuzzy filters of resituated lattices. Journal of Computational Analysis and Applications, 24(6): 1133–1144.   [Google Scholar]
  21. Muhiuddin G and Jun YB (2019). Sup-hesitant fuzzy sub algebras and its translations and extensions. Annals of Communications in Mathematics, 2(1): 48-56.   [Google Scholar]
  22. Muhiuddin G and Mahboob A (2020). Int-soft ideals over the soft sets in ordered semi groups. AIMS Mathematics, 5(3): 2412-2423. https://doi.org/10.3934/math.2020159   [Google Scholar]
  23. Muhiuddin G, Al-Kadi D, and Balamurugan M (2020a). Anti-intuitionistic fuzzy soft a-ideals applied to BCI-algebras. Axioms, 9(3): 1-13. https://doi.org/10.3390/axioms9030079   [Google Scholar]
  24. Muhiuddin G, Al-Kadi D, and Mahboob A (2020d). Hybrid structures applied to ideals in BCI-Algebras. Journal of Mathematics, 2020: 2365078. https://doi.org/10.1155/2020/2365078   [Google Scholar]
  25. Muhiuddin G, Al-Kadi D, and Mahboob A (2021). Ideal theory of BCK/BCI-algebras based on hybrid structures. Journal of Mathematics and Computer Science, 23(2): 136-144. https://doi.org/10.22436/jmcs.023.02.06   [Google Scholar]
  26. Muhiuddin G, Al-Kadi D, Mahboob A, and Shum KP (2020c). New types of bipolar fuzzy ideals of BCK-algebras. International Journal of Analysis and Applications, 18(5): 859-875.   [Google Scholar]
  27. Muhiuddin G, Al-Kenani AN, Roh EH, and Jun YB (2019d). Implicative neutrosophic quadruple BCK-algebras and ideals. Symmetry, 11(2): 277-287. https://doi.org/10.3390/sym11020277   [Google Scholar]
  28. Muhiuddin G, Al-Roqi AM, and Aldhafeeri S (2017a). Filter theory in MTL-algebras based on Uni-soft property. Bulletin of the Iranian Mathematical Society, 43(7): 2293-2306.   [Google Scholar]
  29. Muhiuddin G, Feng F, and Jun YB (2014). Subalgebras of BCK/BCI-algebras based on cubic soft sets. The Scientific World Journal, 2014: 458638. https://doi.org/10.1155/2014/458638   [Google Scholar] PMid:24895652 PMCid:PMC4034581
  30. Muhiuddin G, Kim HS, Song SZ, and Jun YB (2017c). Hesitant fuzzy translations and extensions of sub algebras and ideals in BCK/BCI-algebras. Journal of Intelligent and Fuzzy Systems, 32(1): 43-48. https://doi.org/10.3233/JIFS-151031   [Google Scholar]
  31. Muhiuddin G, Kim SJ, and Jun YB (2019a). Implicative 𝒩-ideals of BCK-algebras based on neutrosophic 𝒩-structures. Discrete Mathematics, Algorithms and Applications, 11(1): 1950011. https://doi.org/10.1142/S1793830919500113   [Google Scholar]
  32. Muhiuddin G, Mahboob A, and Mohammad KN (2019c). A new type of fuzzy semi prime subsets in ordered semi groups. Journal of Intelligent and Fuzzy Systems, 37(3): 4195-4204. https://doi.org/10.3233/JIFS-190293   [Google Scholar]
  33. Muhiuddin G, Mahboob AHSAN, and Balamurugan M (2020b). Hesitant anti-intuitionistic fuzzy soft commutative ideals of BCK-algebras. Annals of Communications in Mathematics, 3(2): 158-170. https://doi.org/10.3390/axioms9030079   [Google Scholar]
  34. Muhiuddin G, Rehman NOOR, and Jun YB (2019b). A generalization of (∈,∈∨ q)-fuzzy ideals in ternary semi groups. Annals of Communications in Mathematics, 2(2): 73-83.   [Google Scholar]
  35. Muhiuddin G, Roh EH, Ahn SS, and Jun YB (2017b). Hesitant fuzzy filters in lattice implication algebras. Journal of Computational Analysis and Applications, 22(6): 1105-1113.   [Google Scholar]
  36. Roy AR and Maji PK (2007). A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics, 203(2): 412-418. https://doi.org/10.1016/j.cam.2006.04.008   [Google Scholar]
  37. Senapati T, Jun YB, Muhiuddin G, and Shum KP (2019). Cubic intuitionistic structures applied to ideals of BCI-algebras. Analele Universitatii" Ovidius" Constanta-Seria Matematica, 27(2): 213-232. https://doi.org/10.2478/auom-2019-0028   [Google Scholar]
  38. Talee AF, Abbasi MY, Muhiuddin G, and Khan SA (2020). Hesitant fuzzy sets approach to ideal theory in ordered Γ-semi groups. Italian Journal of Pure and Applied Mathematics, 43: 73-85.   [Google Scholar]