International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 8, Issue 3 (March 2021), Pages: 57-62

----------------------------------------------

 Original Research Paper

 Title: Comparison of classical and Bayesian estimators to estimate the parameters in Weibull distribution under weighted general entropy loss function

 Author(s): Fuad Alduais 1, 2, *

 Affiliation(s):

 1Mathematics Department, College of Humanities and Science in Al Aflaj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
 2Business Administration Department, Administrative Science College, Thamar University, Thamar, Yemen

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0002-6798-6295

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2021.03.008

 Abstract:

In this work, we have developed a General Entropy loss function (GE) to estimate parameters of Weibull distribution (WD) based on complete data when both shape and scale parameters are unknown. The development is done by merging weight into GE to produce a new loss function called the weighted General Entropy loss function (WGE). Then, we utilized WGE to derive the parameters of the WD. After, we compared the performance of the developed estimation in this work with the Bayesian estimator using the GE loss function. Bayesian estimator using square error (SE) loss function, Ordinary Least Squares Method (OLS), Weighted Least Squared Method (WLS), and maximum likelihood estimation (MLE). Based on the Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that the performance of the Bayes estimator under developed method (WGE) loss function is the best for estimating shape parameters in all cases and has good performance for estimating scale parameter. 

 © 2021 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Weighted general entropy, Bayesian estimation, Weibull distribution, Classical estimation

 Article History: Received 29 August 2020, Received in revised form 19 November 2020, Accepted 21 November 2020

 Acknowledgment:

This Publication was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

  Alduais F (2021). Comparison of classical and Bayesian estimators to estimate the parameters in Weibull distribution under weighted general entropy loss function. International Journal of Advanced and Applied Sciences, 8(3): 57-62

 Permanent Link to this page

 Figures

 No Figure

 Tables

 Table 1 Table 2

----------------------------------------------

 References (14)

  1. Al-Duais F (2020). Using non-linear programming to determine weighted coefficient of balanced loss function for estimating parameters and reliability function of weibull distribution. Pushpa Publishing House, Allahabad, 62(1): 31-53. https://doi.org/10.17654/AS062010031   [Google Scholar]
  2. Al-Duais F and Alhagyan M (2020). Bayesian estimates based on record values under weighted LINEX loss function. Pakistan Journal of Statistics and Operation Research, 16(1): 11-19. https://doi.org/10.18187/pjsor.v16i1.2854   [Google Scholar]
  3. Aslam M, Kazmi SMA, Ahmad I, and Shah SH (2014). Bayesian estimation for parameters of the Weibull distribution. Science International (Lahore), 26(5): 1915-1920.   [Google Scholar]
  4. Basumatary H, Sreevalsan E, and Sasi KK (2005). Weibull parameter estimation-A comparison of different methods. Wind Engineering, 29(3): 309-315. https://doi.org/10.1260/030952405774354895   [Google Scholar]
  5. Calabria R and Pulcini G (1996). Point estimation under asymmetric loss functions for left-truncated exponential samples. Communications in Statistics-Theory and Methods, 25(3): 585-600. https://doi.org/10.1080/03610929608831715   [Google Scholar]
  6. Gupta PK and Singh AK (2017). Classical and Bayesian estimation of Weibull distribution in presence of outliers. Cogent Mathematics, 4(1): 1300975. https://doi.org/10.1080/23311835.2017.1300975   [Google Scholar]
  7. Guure CB, Ibrahim NA, Adam MB, Bosomprah S, and Ahmed AO (2014). Bayesian parameter and reliability estimate of Weibull failure time distribution. The Bulletin of the Malaysian Mathematical Sciences Society, Series 2, 37(2): 611–632.   [Google Scholar]
  8. Hung WL and Liu YC (2004). Estimation of Weibull parameters using a fuzzy least-squares method. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12(05): 701-711. https://doi.org/10.1142/S0218488504003156   [Google Scholar]
  9. Marks NB (2005). Estimation of Weibull parameters from common percentiles. Journal of Applied Statistics, 32(1): 17-24. https://doi.org/10.1080/0266476042000305122   [Google Scholar]
  10. Mohammed AAO and Ibrahim NA (2011). Bayesian survival estimator for Weibull distribution with censored data. Journal of Applied Sciences, 11(2): 393-396. https://doi.org/10.3923/jas.2011.393.396   [Google Scholar]
  11. Nwobi FN and Ugomma CA (2014). A comparison of methods for the estimation of Weibull distribution parameters. Metodoloski Zvezki, 11(1): 65-78.   [Google Scholar]
  12. Pobočíková I and Sedliačková Z (2014). Comparison of four methods for estimating the Weibull distribution parameters. Applied Mathematical Sciences, 8: 4137-4149. https://doi.org/10.12988/ams.2014.45389   [Google Scholar]
  13. Saeed MK, Salam A, Rehman AU, and Saeed MA (2019). Comparison of six different methods of Weibull distribution for wind power assessment: A case study for a site in the Northern region of Pakistan. Sustainable Energy Technologies and Assessments, 36: 100541. https://doi.org/10.1016/j.seta.2019.100541   [Google Scholar]
  14. Sinha SK (1986). Reliability and life testing. John Wiley and Sons, Hoboken, USA.   [Google Scholar]