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1. Introduction distribution based on complete data. After, we will
compare the proposed estimator with others.
The Weibull distribution (WD) is one of the most The probability density function (p. d. f) of two
popular and widely used. Distributions in life testing parameters WD which given by,
and reliability studies. The Weibull distribution is
mainly used in forecasting failure rates in numerous Fx; 0,m) = gxn—l exp [_ %n] x>0 6,7>0

applications in various areas; for example, survival
analysis, animal bioassay, breaking strength, and life
expectancy.

Many researchers estimated the parameters of

(0

The cumulative distribution function (c. d. f) is:

WD using several methods, including Bayesian and Flx- 7)) =1— o _ 08 0 2
non-Bayesian (Aslam et al, 2014; Al-Duais and (G 6m) = eXp[ 6] x> > (2)
Alhagyan, 2020; Pobocikova and Sedliackova, 2014; o ) ] o
Gupta and Singh, 2017; Guure et al, 2014; The reliability function at time ¢ is given by
Mohammed and Ibrahim, 2011; Basumatary et al., o
2005; Nwobi and Ugomma, 2014; Marks, 2005;  R(t; 6m)=exp[-=]| ;x>0 6,7>0 (3)
Saeed et al,, 2019; Al-Duais, 2020).

In this paper, we will derive a Bayesian estimator where, nand 6 are shape and scale parameters,
under weighted General Entropy loss function respectively.

(WGE) to estimate parameters of the Weibull
2. Classical methods of estimation of Weibull
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Estimator (MLE), (ii) Ordinary Least Squares Method
(OLS), (iii) Weighted Least Squared Method (WLS).
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2.1. Maximum likelihood estimator (MLE)

Let x = x4, X,%3,...X, be the lifetime of a
random sample of size n drawn independently from
the WD defined by 1, then the likelihood function for
the given sample observations:

0 - :
Lf(x; 6.m) = MLy 1exp[—%] =

LR o O B Iyn .m
grlli=1X;  €XP|= Sli=1%; 4)

Taking the natural logarithm of both sides yields,
InL=nlnp—nlné6+@ -1y~ Inx; — % Lx; (5)
Differentiating (5) with respect to n and 6 in turn

and equating to zero, we obtain the equations as
follows:

dlnL _n IL x? Inx;

an 7 1@ +Xilnx; =0, (6)
dlnL n, IRl

Y = — =+ ’0512 = 0 (7)

Unfortunately, there is no closed solution for Egs.
6 and 7. Thus, as an alternative, numerical
techniques are used like the Newton-Raphson
method and the iteration method.

Egs. 6 and 7 are nonlinear, so we will use the
numerical analysis by the Newton-Raphson method
to find the estimate of the parameters 7 and 8.

2.2. Ordinary least squares method (OLS)

Let x;, X3, X3, ...x, be a random sample of size n
from the WD of Eq. 1. Form Eq. 2, its distribution
given by,

In[—In(1 —F(x; 8,n)] =—1n6 +nlnx. (8)

Let x(;) < Xy < x@3) < -+ < Xy be the ordered
observations in a random sample of size n. Then Eq.
8 can be rewritten as:

In[—In(1—F(x@; 6,m1)] = —In6 + nlnxg
1,2,3,..,n.

1=

)

Eq. 9 represents a simple linear regression
function corresponding to F(x;; 6,71):

Yi=a+in+Ei

where, ¥; =In[—in(1—-F))] and F; it is a point
estimator of F(x(;; 6,7n), many estimators for F; are
used, for example, the mean rank
estimator F; = i/n+1, the Median Rank
estimator F; = (i — 0.3)/(n + 0.4),
F,=(G{-3/8)/(n+025and F, =(i—0.05)/n.
X;=lnxgp,a=—-In6,b=n.

The estimates @ and b of the regression
parameters, a and b minimize the function,
9(a,b) =

Py(Y —a—blnxg)2 (10)
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Therefore, the estimates @ and b of the
parameters, a and b are given by,

5 _ n¥t,Inxg In[-In(1-F)]- 3%, Inx; YL, In[-In(1-F;))]
oLs = n XL, n2(e)- (T, Inxg)”

(11)
o 1 L -~ 1
Aors = 7 ltl=11n[_ ln(l - Fi))] —bors ;Zz;llnx(i) (12)

The estimates 7j,,g and 8,5 of the parameters,
n and 6 are given by,

_ n¥ykiIny; In[-In(1-F)]- ¥ Inx; ¥ In[-In(1-F;))]

NoLs = n YR, In2(x)— (T, Inxgp)®
(13)
~ 1 F
s = exp[- 251 nl-n(1 — F)] -
~ 1
Bovs 7 iy Inx | a0

2.3. Weighted least squared method (WLS)

The weighted least-squares (WLS) estimate of
the parameters, n,and 6 are the values of the
parameters which minimizes the function,
9y ®,0)= YL W(n[-In (1-F)]+Ing -
nlnxg )? (15)

The major difficulty in applying the WLS method
is in finding W; in Eq. 14. To obtain the weights W,
(Hung and Liu, 2004) used the delta method and
obtained,

1

Var (In[—1In (1 - F)]) « A maFor (16)

Hence, the weights can be taken to be as follows:

—_F. —_FN12
W, = [A-F)In(1-Fy)]

—m, L= 1,2,3,...,7’1.

(17)
Minimizing Q*,,(n,0) we obtain the WLS
estimates of n, and 6 are:

Ta Wi Yihi— (S, Wi Y) (T, Wi )
LW Y- (SR, Wi Y
OwoLs = exp[@w]

NMwoLs =

(18)
(19)

where,

Gy = Nwors Die1 Wi Vi — Ziq W, ¢, with YV; = Inx,,
andy; = In[-In(1-F)].

3. Loss function

The next subsections present three main types of
loss function under study in this work.

3.1. Squared error loss function (SE)

Under the squared error loss function with the
following form:

L(@,9)=(H- 9). (20)
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The Bayes estimator of 9, denoted by 9 ¢ is given
by,

3.2. General entropy loss function (GELF)

The General Entropy loss function for 9 can be
expressed as the following form (Calabria and
Pulcini, 1996):

L@, 9) e (9/9) —qin(d/9) -1 ,q#0 (21)
where, 9 is an estimate of 9. The Bayes estimator of
9, denoted by 9 ;i is the value 9 which minimizes
Eq. 21 and given as:

Bep = [Eo (0] 7 22)

provided that Eg(¥9~7) exists and finite.

3.3. Weighted general entropy loss function
(WGELF)

The researcher proposes this loss function
depending on weighted loss function General
Entropy as following:

Ly(9.,9) < w@) [(9/9)" —qm(d/9)-1 | ,q#0
(23)

where L,, represents the estimated parameter that
makes the expectation of loss function (Eq. 23) as
smallest as possible. While, w(9) represents the
proposed weighted function, which equals to:
w(9) = ﬂi (24)

Depending on the posterior distribution of the
parameter 9, and by using the proposed weighted

function as in Eq. 24, we can get the estimated
weighted Bayes of the parameter 9 as the following:

E[L,(9,9)] = f Ly@,9)f(9|x) dv
- fvﬁw(ﬁ)[(ﬁ/ﬁ) —qn(9/9) -1 |f(9]x) v
- fvwz [(9/9)" = qm(@/9) -1 |£(9]x) av

qlnd

= o737 0/ 90) F(Ox) a0 — [, L= F(9]x) a9 +
v19 qignzﬂf(ﬂ x) d9

v19 9z f(ﬁlﬁ) dﬁ

=99 [ o5 fO]x) 49 — qInd [, F(9]x) d9 +
Ind9

\-,/19 9% f(ﬁlx) dﬁ fvg%f(ﬁl E) dﬁ
E[L (9,9)] =99E (97| x) —qInd E (72| x) +
aE (57| x) — E (97| 2)
aLw(ﬁ 19) _ 9q— - q - _
= =q T E (97| x) - S E (97| x) = 0.

So, we can find that:

qdT E (97¢*0| ) = T E (977 x).
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Consequently, the Bayesian estimation of the
parameter 9 using General. Entropy loss function
will be:

) (97| x)

Provided that Eg(977) and Ey(9~@*+9) exists and
finite, where E(p denotes the expected value.
Note that, WGE loss function is a generalizing of the
GE loss function, where GE is a special case of WGE
when z = 0 in Eq. 25.

(25)

4. Bayesian methods of estimation of Weibull
parameters

In this section, we derive the Bayes estimates of
the scale and shape parameters of WD, and we
assume the Jeffrey formula as a prior distribution for
each parameter as follow (Sinha, 1986):

HOES
£(8) o

;0fa<o ,0<n<a
;0560 < oo,

(26)
(27)

Therefore, the prior joint distribution function for
parameters that we need to estimate are given as
follow:

f(n,e)ocﬁ ; €>0,0<6 <o (28)

By combining the likelihood function in Eq. 4 with
the prior (p.d.f) of n and 6 in Eq. 28, then the
posterior distribution of n and 8 is given by,

f(n.0]x)f(n,0)
I F(.0 | x) f(n,0) de dn
(l_[l. 1x)"” 1eXp[ i 1X"/9] deé dn

n(n,0) =

(29)

gn+c

where,
k—l
a (e pn n n-1 n
O\ e L
—F(Tl‘l‘C—l)j W n.

1.11

The marginal posterior p.d.f for parameter n can
be obtained by integrating Eq. 19 with respect to 6
as follow:

ni(n |x) = Jyom(n,0)do
n" I 1xTI 1/(21 1% e

l ntc—1 ;0< <a. 30

fﬂ”l'lflxn 1/(211 X; i dn K ( )

The marginal posterior p. d. f for parameter 8 can
be obtained by integrating Eq. 29 with respect to n as
follow:

m(02)= |

vn

n(n,0) dn
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9n+c f n" i 1x exp[ Ti- 1x71/9] dn
n+c-1

F(n+c— l)f %] V(L x i dn

;0< 0 <. (31)

4.1. Estimates based on squared error loss
function (SELF)

By using the Squared Error Loss function in Eq.
20, the Bayes estimator 7jgy for 7, is given by,

Jy ] (S )™ an
=F x)= = 32
Ase = (T] | ) f ™[Iz 1x17 1/(21 1% L e (32)
-1 n+c-2
9SE _ E(H |£) _ f N /(S x] dn (33)

nFc—1
an

(n+c=2) [ p Ty /(B &)

4.2. Estimates based on general entropy loss
function (GELF)

By using the General Entropy Loss function in Eq.
21, the Bayes estimator 7 for 7, is given by,

%E—Ew7ﬂxﬂq Uyn=ami(n|x)dn] @ =
1
I:fo n" ql—[n 1x7l 1/(21 1X 171 n+c_1d77:|_3

(34)

n+c-1

fg I 1x77 1/(21 1 L) dn

and the Bayes estimator 8 for 8, is given by,

o = E[(6 -] )]+ = [0 - m3(0 | x) ao] " =

[F(q+n+c D Jy ]/ (B, L)qm”_ldn] a

I'(n+c-1) nest

fo "Il 1x71 1/(21, 1% an
(35)

14 [‘(n+c 1)

Thus the weighted Bayes estimator for the shape
parameter @ is:

1
r(n+c+z+q-1) foa11"1'[?=1x?_1/(x?)n+c+z+q_1 q
C(n+c+z-1) foannl'[?=1x?_l/(x?)MHZ_l

gWGE = [;_:]_% =
(44)

5. Simulation

In this section, Monte-Carlo simulation is
employed to compare the performance of four
estimates (MLE, OLS, WOLS, and Bayes Estimators
under different loss function including SE, GE, and
WGE) for unknown shape and scale parameters
based on the mean squared errors (MSE’s) as
follows:

Step (1): Setting the default values:
a. To observe the effect the parameters of Weibull
distribution on the estimates, five different values

4.3. Estimates based on weighted general
entropy loss function (WGELF)

Under the weighted General Entropy loss
function, and by using 23, the Bayes estimator fjy¢g
for n is given by,

1
flwee = [%] q - [%]_% (36)
where,
b e T G
and,
I, :ifa " 7111351] 1/(21 1% n+c_1d77 (38)
13—f AT, X0t (S &7 AR (39)

Thus the weighted Bayes estimator for the shape
parameter 7 is:

fiwee = [;—1] _% =

I3f n HL 1x"l l[f 9n+c+z+qexp( ZL 1x77/9) de]d -
and,

15 [‘(n+c 1) 3 f n HL 1x7l l[f 9n+c+zexp( Zl 1x77/9) de]

1
[y O Ml ™S ) an] (40)
f "2l 1x71 1/(21 1% n+c_1d77
and the Bayes estimator 8y, for 8 is given by,
1
5 CIUCARARE ] I TA b
Owee = [W = [g] (41)
where,
F(n+c+z+q-1) f:n”ﬂ?zlxin_l/(x?)nwﬂw_l 42
I'(n+c-1).I3 ( )
_ Tovetz=1) [ I )/ (x D (43)

I'(n+c-1).I5
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of (n,0) were selected as casel (0.5, 0.5), case2
(0.5, 1.5), case3 (1.5, 0.5), case4 (1.5, 1.5) and
case 5 (1.5, 2.5).

b. Choose the sample size n = 15,25,50,75 and
100.

c. The values of GELF's constant (q) selected to be
(g =1.5 and —1.5) the positive and negative
values were selected to represent both cases of
upper estimate and under estimate, respectively.

d. The values of WGELF's constant (z) were
selected to be (z =-2 and 2).

e. The values of the constant
formula was selectedc = 3.

f. The number of iteration (L) was chosen to be
(10000).

¢ in the Jeffery

Step (2): Generate the sample random values of WD
by using the formula:

%t = [0 Log (u(L)]"
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where u=RND(1) is a random variable distributed as
a uniform distribution for the period (0,1).

Step (3): Calculating the ML, OLS. WOLS and
Bayesian estimator of the parameters function of
(WD) according to the formulas that had been
obtained we calculate 9 = (ﬁ, 9).

Step (4): Comparing the different estimation
methods according to the values of mean squared
error (MSE), where:

Ly(i- 9)

MSE =
L

where 9; is the estimate at the i*" run.

The simulation results of MSE are tabulated in
Tables 1-2.

Table 1: MSEs of the estimates of n with different cases

fiee Awee
5 5 . . Z=2 Z=-2
(CA)D) n v NoLs Nwts Nse q q
—1.5 1.5 —1.5 1.5 —1.5 1.5
15 0.0201 0.0164 0.0145 0.0245 0.0258 0.0216 0.0172 0.0154 0.0436 0.0316
25 0.0093 0.0099 0.0088 0.0103 0.0107 0.0094 0.0081 0.0076 0.0151 0.0127
(0.5,0.5) 50 0.0035 0.0051 0.0042 0.0038 0.0039 0.0035 0.0033 0.0032 0.0051 0.0043
75 0.0022 0.0036 0.0029 0.0024 0.0024 0.0022 0.0022 0.0021 0.0028 0.0026
100 0.0016 0.0027 0.0022 0.0017 0.0017 0.0016 0.0016 0.0016 0.0019 0.0018
15 0.0288 0.0165 0.0143 0.0169 0.0177 0.0119 0.0124 0.0113 0.0226 0.0162
25 0.0089 0.0098 0.0089 0.0084 0.0087 0.0063 0.0069 0.0063 0.0098 0.0080
(1.5,0.5) 50 0.0034 0.0052 0.0042 0.0033 0.0034 0.0030 0.0030 0.0030 0.0038 0.0033
75 0.0022 0.0035 0.0029 0.0022 0.0022 0.0020 0.0020 0.0020 0.0023 0.0022
100 0.0016 0.0027 0.0021 0.0016 0.0016 0.0015 0.0015 0.0015 0.0017 0.0016
15 0.1901 0.1489 0.1366 0.2116 0.2223 0.1822 0.1505 0.1322 0.3644 0.2812
25 0.0850 0.0920 0.0833 0.0962 0.0998 0.0852 0.0762 0.0688 0.1390 0.1120
(0.5,1.5) 50 0.0316 0.0467 0.0378 0.0347 0.0354 0.0321 0.0304 0.0288 0.0449 0.0377
75 0.0199 0.0313 0.0251 0.0213 0.0216 0.0205 0.0193 0.0189 0.0253 0.0225
100 0.0142 0.0241 0.0192 0.0149 0.0151 0.0145 0.0139 0.0137 0.0177 0.0163
15 0.1782 0.1491 0.1332 0.1518 0.1593 0.1030 0.1135 0.0988 0.1900 0.1420
25 0.0787 0.0883 0.0774 0.0640 0.0660 0.0581 0.0554 0.0569 0.0866 0.0704
(1.5,1.5) 50 0.0323 0.0463 0.0389 0.0293 0.0297 0.0272 0.0274 0.0272 0.0334 0.0293
75 0.0201 0.0320 0.0259 0.0188 0.0190 0.0180 0.0180 0.0179 0.0209 0.0191
100 0.0146 0.0241 0.0195 0.0139 0.0140 0.0136 0.0134 0.0136 0.0150 0.0142
15 0.9007 0.1529 0.1374 0.0984 0.1013 0.0883 0.0911 0.1028 0.1354 0.1103
25 0.1335 0.0908 0.0798 0.0559 0.0570 0.0515 0.0534 0.0568 0.0699 0.0612
(1.5,2.5) 50 0.0305 0.0447 0.0369 0.0259 0.0261 0.0261 0.0256 0.0274 0.0301 0.0272
75 0.0199 0.0313 0.0259 0.0177 0.0178 0.0176 0.0174 0.0182 0.0195 0.0272
100 0.0144 0.0242 0.0195 0.0132 0.0132 0.0130 0.0131 0.0133 0.0145 0.0185
Table 2: MSEs of the estimates of 6 with different cases
O Z=2 P Z 2
6,m n OuL Bovs Owis Ose q q
—-1.5 1.5 —-1.5 1.5 —1.5 1.5
15 0.0226 0.0268 0.0242 0.0218 0.0221 0.0250 0.0236 0.0326 0.0261 0.0218
25 0.0133 0.0161 0.0144 0.0119 0.0120 0.0137 0.0127 0.0172 0.0133 0.0121
(0.5,0.5) 50 0.0054 0.0084 0.0071 0.0055 0.0056 0.0059 0.0058 0.0069 0.0060 0.0054
75 0.0036 0.0058 0.0048 0.0037 0.0037 0.0038 0.0038 0.0043 0.0037 0.0036
100 0.0027 0.0043 0.0036 0.0027 0.0027 0.0028 0.0027 0.0031 0.0028 0.0027
15 0.4008 0.3163 0.2931 0.4733 0.5515 0.2062 0.2217 0.2301 1.1451 0.4352
25 0.1903 0.1543 0.1583 0.2006 0.2184 0.1207 0.1319 0.1332 0.3153 0.1779
(1.5,0.5) 50 0.0741 0.0654 0.0688 0.0757 0.0788 0.0617 0.0629 0.0643 0.0965 0.0722
75 0.0479 0.0438 0.0466 0.0487 0.0500 0.0420 0.0428 0.0431 0.0553 0.0471
100 0.0341 0.0317 0.0345 0.0345 0.0352 0.0313 0.0315 0.0321 0.0408 0.0337
15 0.0202 0.0274 0.0253 0.0226 0.0229 0.0247 0.0240 0.0323 0.0256 0.0219
25 0.0109 0.0164 0.0145 0.0119 0.0120 0.0131 0.0126 0.0165 0.0129 0.0122
(0.5,1.5) 50 0.0054 0.0085 0.0070 0.0055 0.0056 0.0059 0.0058 0.0069 0.0059 0.0055
75 0.0035 0.0056 0.0046 0.0036 0.0036 0.0038 0.0037 0.0043 0.0036 0.0036
100 0.0027 0.0044 0.0035 0.0027 0.0027 0.0029 0.0028 0.0032 0.0028 0.0027
15 0.3796 0.2885 0.2782 0.4247 0.4891 0.2027 0.2124 0.2300 0.9180 0.4041
25 0.1932 0.1531 0.1546 01519 0.1617 0.1213 0.1225 0.1331 0.3033 0.1828
(1.5,1.5) 50 0.0759 0.0664 0.0710 0.0678 0.0698 0.0634 0.0615 0.0668 0.0952 0.0745
75 0.0475 0.0431 0.0464 0.0442 0.0450 0.0416 0.0415 0.0431 0.0583 0.0463
100 0.0339 0.0316 0.0337 0.0321 0.0326 0.0313 0.0308 0.0318 0.0399 0.0354
15 1.4701 1.7555 1.5130 1.1615 1.3806 0.7074 0.6919 0.8723 7.2648 2.0835
25 0.8370 0.7375 0.7094 0.6127 0.6764 0.4367 0.4451 0.5088 1.9262 0.8874
(1.5,2.5) 50 0.3335 0.2900 0.2997 0.2726 0.2847 0.2455 0.2380 0.2619 0.4910 0.3347
75 0.2077 0.1907 0.2004 0.1807 0.1863 0.1680 0.1624 0.1741 0.2630 0.1998
100 0.1482 0.1430 0.1475 0.1340 0.1370 0.1250 0.1243 0.1282 0.1845 0.1493
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6. Concluding remarks

From the results in the above Tables 1 and 2, we
can state the following points:

1. Table 1 shows that the performance of the
Bayesian estimator of the shape parameter under
WGE loss is the best estimator comparing to the
other estimators for all cases of (n,6) and all
sample sizesn. On the other hand, the
performance of the WLS estimator of the shape
parameter is the best estimator comparing to the
MLE or OLS. The results also show that MSE's of
all estimators of shape parameter is decreasing
with the increase of the value of the scale
parameter.

2. Table 2 shows that the performance of the
Bayesian estimator of the scale parameter under
WGE loss function with (n =0.5,6 =0.5) (n =
15,6 =0.5) and (n =1.5,0 = 2.5) is the best
estimator comparing to the other estimators for
most sample sizes. While the performance of the
Bayesian estimator of the scale parameter under
GE loss function with (n = 0.5,6 = 1.5) and (n =
1.5,6 = 1.5) is the best estimator comparing to
the other estimators for all sample sizes. On the
other hand, the performance of the MLE
estimator of the scale parameter with (n =
0.5,0 =0.5) and (n =1.5,8 = 0.5) is the best
estimator comparing to the OLS or WLS, While
the performance of the WLS estimator, with (n =
05,6=15) ®=15,6=15) and @n=
1.5,60 = 2.5) is the best estimator comparing to
the MLE or OLS. The results also show that MSE's
of all estimates of scale parameter is increasing
for an increase of the Parameter value with all
sample sizes.

3. The results showed that the values of all MSE's
decrease as n increases.

7. Conclusion

In this work, we developed the GE loss function to
estimate the parameters of WD. The development
was through merging a weight into GE to produce a
new loss function called WGE. Then WGE was used
to derive parameters of the WD.

Furthermore, we conducted a Monte Carlo
simulation to examine the performance of the
proposed method WGE. Then we compared the
proposed method with other methods, including SE,
GE, MLE, OLS, and WLS. The results show that the
performance of the Bayes estimator under
developed method (WGE) loss function is the best
for estimating shape parameters in all cases and has
good performance for estimating scale parameter.
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