International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 8, Issue 3 (March 2021), Pages: 51-56

----------------------------------------------

 Original Research Paper

 Title: On the H-space and the product of two H-spaces

 Author(s): Maha M. Saeed 1, *, Shaza Alawadi 2

 Affiliation(s):

 1Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
 2Department of Mathematics, University of Jeddah, Jeddah, Saudi Arabia

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0001-6416-8097

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2021.03.007

 Abstract:

Considering the set of real numbers R, for each x ∈ A, B(x)={(x−ϵ,x+ϵ):ϵ>0}, and for each x∈ R\A, let B(x)={[x,x+ϵ):ϵ>0}, the unique topology generated by {B(x): x ∈ R} is denoted by τ(A) and (R, τ(A)) is called an H-space. In this paper, we give some results about these spaces and the product of two of them, including the separation axioms, wD property, various types of compactness and connectedness, and weaker properties of normality. 

 © 2021 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: 𝐻-space, Sorgenfrey line, Lindelöf, Paracompact, 𝜅-metrizable

 Article History: Received 23 August 2020, Received in revised form 8 November 2020, Accepted 19 November 2020

 Acknowledgment:

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

 Citation:

  Saeed MM and Alawadi S (2021). On the H-space and the product of two H-spaces. International Journal of Advanced and Applied Sciences, 8(3): 51-56

 Permanent Link to this page

 Figures

 No Figure

 Tables

 No Table

----------------------------------------------

 References (20)

  1. AlZahrani S and Kalantan L (2017). 𝐶-normal topological property. Filomat, 31(2): 407-411. https://doi.org/10.2298/FIL1702407A   [Google Scholar]
  2. Bouziad A and Sukhacheva E (2017). On Hattori spaces. Commentationes Mathematicae Universitatis Carolinae, 58(2): 213-223. https://doi.org/10.14712/1213-7243.2015.199   [Google Scholar]
  3. Chatyrko VA and Hattori Y (2013). A poset of topologies on the set of real numbers. Commentationes Mathematicae Universitatis Carolinae, 54(2): 189-196.   [Google Scholar]
  4. Chatyrko VA and Hattori Y (2016). On reversible and bijectively related topological spaces. Topology and its Applications, 201: 432-440. https://doi.org/10.1016/j.topol.2015.12.052   [Google Scholar]
  5. Engelking R (1977). General topology. PWN-Polish Scientific Publishers, Warsaw, Poland.   [Google Scholar]
  6. Espelie MS and Joseph JE (1976). Compact subsets of the Sorgenfrey line. Mathematics Magazine, 49(5): 250-251. https://doi.org/10.1080/0025570X.1976.11976595   [Google Scholar]
  7. Hattori Y (2010). Order and topological structures of posets of the formal balls on metric spaces. Memoirs of the Faculty of Science and Engineering Shimane University. Series B. Mathematical Science, 43: 13-26.   [Google Scholar]
  8. Jones FB (1937). Concerning normal and completely normal spaces. Bulletin of the American Mathematical Society, 43(10): 671-677. https://doi.org/10.1090/S0002-9904-1937-06622-5   [Google Scholar]
  9. Kalantan L and Alhomieyed M (2017). CC-normal topological spaces. Turkish Journal of Mathematics, 41(3): 749-755. https://doi.org/10.3906/mat-1604-3   [Google Scholar]
  10. Kalantan L and Saeed M (2017). L-normality. Topology Proceedings, 50: 141-149.   [Google Scholar]
  11. Kalantan LUTFI and Alhomieyed M (2018). S-normality. Journal of Mathematical Analysis, 9(5): 48-54.   [Google Scholar]
  12. Kulesza J (2017). Results on spaces between the Sorgenfrey and usual topologies on R. Topology and its Applications, 231: 266-275. https://doi.org/10.1016/j.topol.2017.09.028   [Google Scholar]
  13. Ludwig LD (2002). Two generalizations of normality: Alpha-normality and beta-normality. Ph.D. Dissertation, Ohio University, Athens, USA.   [Google Scholar]
  14. Michael E (1953). A note on paracompact spaces. Proceedings of the American Mathematical Society, 4(5): 831-838. https://doi.org/10.1090/S0002-9939-1953-0056905-8   [Google Scholar]
  15. Mohammed M, Kalantan L, and Alzumi H (2019). C-Paracompactness and C2-paracompactness. Turkish Journal of Mathematics, 43(1): 9-20. https://doi.org/10.3906/mat-1804-54   [Google Scholar]
  16. Morita K (1963). On the product of paracompact spaces. Proceedings of the Japan Academy, 39(8): 559-563. https://doi.org/10.3792/pja/1195522956   [Google Scholar]
  17. Nyikos P (1981). Axioms, theorems, and problems related to the Jones lemma: General topology and modern analysis. Academic Press, New York, USA.   [Google Scholar]
  18. Ščepin EV (1980). On-metrizable space. Mathematics of the USSR-Izvestiya, 14(2): 407-440. https://doi.org/10.1070/IM1980v014n02ABEH001124   [Google Scholar]
  19. Steen LA, Seebach JA, and Steen LA (1978). Counterexamples in topology. Volume 18, Springer, New York, USA. https://doi.org/10.1007/978-1-4612-6290-9   [Google Scholar]
  20. Suzuki J, Tamano K, and Tanaka Y (1989). 𝜅-metrizable spaces, stratifiable spaces and metrization. Proceedings of the American Mathematical Society, 105(2): 500-509. https://doi.org/10.2307/2046970   [Google Scholar]