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Considering the set of real numbers R, for each x ∈ A, B(x)={(x−ϵ,x+ϵ):ϵ>0}, 
and for each x∈ R\A, let B(x)={[x,x+ϵ):ϵ>0}, the unique topology generated by 
{B(x): x ∈ R} is denoted by τ(A) and (R, τ(A)) is called an H-space. In this 
paper, we give some results about these spaces and the product of two of 
them, including the separation axioms, wD property, various types of 
compactness and connectedness, and weaker properties of normality. 
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1. Introduction 

*Hattori (2010) defined on the set of real numbers 
ℝ topologies that lie between the usual topology and 
the Sorgenfrey topology; ℝ with these topologies 
were called 𝐻-spaces. These spaces were previously 
studied in Bouziad and Sukhacheva (2017), Chatyrko 
and Hattori (2016; 2013), and Kulesza (2017). In 
this paper, we give some results about these spaces 
and the product of two of them. Throughout this 
paper, we denote the set of positive integers by ℕ, 
the rationals by ℚ, the irrationals by ℙ, and the set of 
real numbers by ℝ. A 𝑇4 space is a 𝑇1 normal space 
and a Tychonoff (𝑇

3
1

2

) space is a 𝑇1 completely 

regular space. We do not assume 𝑇2 in the definition 
of compactness, paracompactness and countable 
compactness. We do not assume regularity in the 
definition of Lindelöfness. For a subset 𝐴 of a space 

𝑋, i𝑛𝑡𝐴 and 𝐴 denote the interior and the closure of 
𝐴, respectively. 

Recall that the Sorgenfrey topology 𝒮 on ℝ is the 
unique topology generated by the base { [𝑥, 𝑦): 𝑥 <
𝑦; 𝑥, 𝑦 ∈ ℝ }. ℝ with this topology 𝒮 is called the 
Sorgenfrey line. Let 𝒰 denote the usual metric 
topology on ℝ. 

 
Definition 1.1: Let 𝐴 be any subset of ℝ. For each 𝑥 ∈
𝐴, let ℬ(𝑥) = { ( 𝑥 − 𝜖, 𝑥 + 𝜖): 𝜖 > 0 }. For each 𝑥 ∈
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ℝ\𝐴, let ℬ(𝑥) = { [ 𝑥, 𝑥 + 𝜖): 𝜖 > 0 }. The unique 
topology generated by { ℬ(𝑥): 𝑥 ∈ ℝ } is denoted by 
𝜏(𝐴) and (ℝ, 𝜏(𝐴)) is called an 𝐻-space (Bouziad and 
Sukhacheva, 2017; Chatyrko and Hattori, 2016; 
2013; Kulesza, 2017).  
 

Observe that if we interchange the local bases in 
Definition 1.1 and define a new topology 𝒮𝐴 on ℝ, 
then for any subset 𝐴 of ℝ, we have 𝒮𝐴 = 𝜏(ℝ\𝐴). 
Note that if 𝐴 = ∅, then 𝜏(𝐴) = 𝒮 and if 𝐴 = ℝ, then 
𝜏(𝐴) = 𝒰. From now on, when we consider an 𝐻-
topology 𝜏(𝐴) on ℝ, we are assuming that 𝐴 is a non-
empty proper subset of ℝ. Observe that if 𝑥 ∈ ℝ\𝐴 
and [𝑥, 𝑦) ∈ ℬ(𝑥), then [𝑥, 𝑦) need not be clopen 
(closed-and-open) because 𝑦 could be an element of 
𝐴. But if 𝑥, 𝑦 ∈ ℝ\𝐴, then [𝑥, 𝑦) is clopen. It is clear 
that for any subset 𝐴 of ℝ we have that 𝒰 is coarser 
than 𝜏(𝐴) and 𝜏(𝐴) is coarser than 𝒮, i.e., 𝒰 ⊂ 𝜏(𝐴) ⊂
𝒮, (Hattori, 2010). So, it is clear that every 𝐻-space is 
completely Hausdorff. Any 𝐻-space is first countable, 
hence Fréchet, sequential, and of countable 
tightness, (Engelking, 1977). 

 
Proposition 1.2: For any subset 𝐴 of  ℝ, (ℝ, 𝜏(𝐴)) is 
regular.  
 

Observe that the Sorgenfrey line is Lindelöf and 
𝜏(𝐴) ⊂ 𝒮, so any 𝐻-space (ℝ, 𝜏(𝐴)) is Lindelöf. Since 
any Lindelöf regular space is paracompact and 
normal, then every 𝐻-space is paracompact and 
normal. Furthermore, the 𝐻-space (ℝ, 𝜏(𝐴) ) is 
perfectly normal, hence 𝑇6. 

 
Theorem 1.3: For any subset 𝐴 of  ℝ, the 𝐻-space 
(ℝ, 𝜏(𝐴)) is perfectly normal, hence 𝑇6.  
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Proof: We show that every open set is an 𝐹𝜎-set. Let 
𝑈 ∈ 𝜏(𝐴) be arbitrary. Without loss of generality, 
assume that 𝑈 = ∅. Let 𝑉 =int 𝒰𝑈, the interior of 𝑈 
with respect to the usual topology. Then, 𝑉 is an 𝐹𝜎-
set in 𝒰, because (ℝ, 𝒰) is perfectly normal. Hence, 
𝑉 = ⋃𝑛∈ℕ 𝐹𝑛, where 𝐹𝑛 is closed in (ℝ, 𝒰) for each 
𝑛 ∈ ℕ. Since 𝒰 ⊂ 𝜏(𝐴), then 𝐹𝑛 is also closed in 
(ℝ, 𝜏(𝐴)). Then, 𝑉 an 𝐹𝜎-set in 𝜏(𝐴).  
 
Claim 1: The set 𝐵 = 𝑈\𝑉 is a subset of ℝ\𝐴.  
 
Proof of Claim 1: If 𝐵 = ∅, we are done. Assume that 
𝐵 = ∅. Pick 𝑥 ∈ 𝐵 arbitrary. Then 𝑥 ∈ 𝑉 =int 𝒰𝑈 and 
𝑥 ∈ 𝑈. Suppose 𝑥 ∈ 𝐴, and then there is an 𝜖 > 0 
such that ( 𝑥 − 𝜖, 𝑥 + 𝜖 ) ⊆ 𝑈 because 𝑈 is open in 
𝜏(𝐴). Thus 𝑥 ∈ int 𝒰𝑈 which means that 𝑥 ∈ 𝑉 and 
this is a contradiction. Therefore, 𝐵 = 𝑈\𝑉 ⊆ ℝ\𝐴 
and Claim 1 is proved. Hence, for each 𝑎 ∈ 𝐵, there 
exists 𝑦𝑎 ∈ ℝ such that [𝑎, 𝑦𝑎) ⊆ 𝑈. 
 
Claim 2: For distinct 𝑎, 𝑏 ∈ 𝐵, [𝑎, 𝑦𝑎) ∩ [𝑏, 𝑦𝑏) = ∅. 
 
Proof of claim 2: Assume, on the contrary, that 
there exist distinct 𝑎, 𝑏 ∈ 𝐵 with [𝑎, 𝑦𝑎) ∩ [𝑏, 𝑦𝑏) ≠ ∅. 
Then, 𝑎 ∈ [𝑏, 𝑦𝑏) or 𝑏 ∈ [𝑎, 𝑦𝑎). Since 𝑎 ≠ 𝑏, this 
implies 𝑎 ∈ (𝑏, 𝑦𝑏) ⊆ 𝑈 or 𝑏 ∈ (𝑎, 𝑦𝑎) ⊆ 𝑈. Hence, 
𝑎 ∈ 𝑉 or 𝑏 ∈ 𝑉, a contradiction. Thus, claim 2 is 
proved. 
 

Now, {(𝑎, 𝑦𝑎): 𝑎 ∈ 𝐵} is a pairwise disjoint family 
of non-empty open intervals. Since any 𝐻-space is 
separable, we conclude that 𝐵 is countable. For each 

𝑎 ∈ 𝐵, put 𝑥𝑎 =
𝑎+𝑦𝑎

2
. Then, [𝑎, 𝑥𝑎] ⊂ [𝑎, 𝑦𝑎) ⊆ 𝑈. We 

actually have 𝑈 = ⋃𝑎∈𝐵 [𝑎, 𝑥𝑎] ⋃ 𝑉 is a union of 
two 𝐹𝜎-sets, and hence is an 𝐹𝜎-set.  

It follows that the 𝐻-space (ℝ, 𝜏(𝐴)) is 
hereditarily normal, hereditarily paracompact, and 
hereditarily Lindelöf, as stated in Chatyrko and 
Hattori (2013). 

 
Recall that a space 𝑋 is called 𝐷𝑜𝑤𝑘𝑒𝑟 if 𝑋 is 𝑇4 

and 𝑋 × 𝐼 is not normal where 𝐼 = [0,1] is 
considered with its usual metric topology. Since the 
product of a Lindelöf space with a compact space is 
Lindelöf (Engelking, 1977), then for any subset 𝐴 of 
ℝ, ( ℝ , 𝜏(𝐴) ) × ( 𝐼 , 𝒰𝐼 ) is Lindelöf. Since the 
product is also 𝑇3, then it is normal. Thus we 
conclude the following theorem. 
 
Theorem 1.4: Every 𝐻-space (ℝ, 𝜏(𝐴)) is not Dowker.  
 

Recall that a space 𝑋 is said to satisfy property 𝑤𝐷 
(Nyikos, 1981) if for every infinite closed discrete 
subspace 𝐶 of 𝑋, there exists a discrete family 
{ 𝑈𝑛: 𝑛 ∈ ℕ } of open subsets of 𝑋 such that each 𝑈𝑛 
meets 𝐶 at exactly one point. That is, for each 𝑛 ∈ ℕ 
we have 𝑈𝑛 ∩ 𝐶 is a singleton. 
 
Theorem 1.5: Every 𝐻-space (ℝ, 𝜏(𝐴)) is 𝑤𝐷.  
 
Proof: Let 𝐶 be any infinite closed discrete subspace 
of (ℝ, 𝜏(𝐴)). Since (ℝ, 𝜏(𝐴)) is separable and normal, 

then, by Jones’ Lemma, we conclude that 𝐶 is 
countably infinite. Pick an element 𝑐1 ∈ 𝐶, then 𝑐1 
has only two cases, the set { 𝑐 ∈ 𝐶: 𝑐 < 𝑐1 } is infinite 
or { 𝑐 ∈ 𝐶: 𝑐 > 𝑐1 } is infinite. Without loss of 
generality, assume that the set { 𝑐 ∈ 𝐶: 𝑐 > 𝑐1 } is 
infinite. Denote the set { 𝑐 ∈ 𝐶: 𝑐 > 𝑐1 } ∪ {𝑐1} by 𝐶′. 
Observe that 𝐶′ ⊆ 𝐶. Since ℝ is ordered by the 
relation < and 𝐶′ is countably infinite, we can 
rearrange and enumerate the elements of 𝐶′ to make 
it an increasing sequence 𝐶′ = (𝑐𝑛)𝑛∈ℕ such that 
𝑐𝑛 < 𝑐𝑛+1 for each 𝑛 ∈ ℕ. If 𝑐𝑛 ⟶ 𝑥 in the space 
(ℝ, 𝜏(𝐴)), then 𝑐𝑛 ⟶ 𝑥 in the space (ℝ, 𝒰), i.e., 𝐶′ is 
bounded above and 𝑥 = sup𝐶′. Since 𝐶 is closed, 
then 𝑥 ∈ 𝐶, and there exists an open neighborhood 𝑈 
of 𝑥 such that 𝐶 ∩ 𝑈 = {𝑥}, because 𝐶 is discrete. 
Hence, 𝐶′ ∩ 𝑈 = {𝑥}. This contradicts that 𝑐𝑛 ⟶ 𝑥, as 
𝑐𝑛 is increasing. Thus, the sequence 𝐶′ = (𝑐𝑛)𝑛∈ℕ is 
divergent in (ℝ, 𝜏(𝐴)). Now, for each 𝑛 ∈ ℕ, let, 
 

𝜖𝑛 =
 𝑐𝑛+1 − 𝑐𝑛 

4
. 

 

For each 𝑛 ∈ ℕ, put  
 

𝑈𝑛 = {
( 𝑐𝑛 − 𝜖𝑛 , 𝑐𝑛 + 𝜖𝑛 )  ;   𝑖𝑓     𝑐𝑛 ∈ 𝐴
 [  𝑐𝑛 , 𝑐𝑛 + 𝜖𝑛 )  ;   𝑖𝑓     𝑐𝑛 ∈ ℝ\𝐴

 

 

By our construction, it is clear that the family 
{ 𝑈𝑛: 𝑛 ∈ ℕ } is a discrete family in (ℝ, 𝜏(𝐴)) 
consisting of open sets such that 𝑈𝑛 ∩ 𝐶 = {𝑐𝑛} for 
each 𝑛 ∈ ℕ. Therefore, (ℝ, 𝜏(𝐴)) satisfies property 
𝑤𝐷.  

Observe that {(−𝑛, 𝑛): 𝑎 ∈ ℕ} is an open cover for 
(ℝ, 𝜏(𝐴)) that has no finite subcover, so (ℝ, 𝜏(𝐴)) is 
not compact nor countably compact. Recall that a 
space 𝑋 is pseudo compact if 𝑋 is a Tychonoff and 
every continuous real-valued function defined on 𝑋 
is bounded. In a 𝑇4 space, this is equivalent to 
countable compactness (Engelking, 1977). Hence, for 
any choice of 𝐴 ⊂ ℝ the 𝐻-space ( ℝ , 𝜏(𝐴) ) is 
neither compact, countably compact, nor pseudo 
compact. 

Let us consider the compact subsets in any 𝐻-
space, 𝜏(𝐴). By the relation 𝒰 ⊂ 𝜏(𝐴) ⊂ 𝒮, we know 
that any compact subset 𝐶 of 𝜏(𝐴) must be compact 
in 𝒰, so it is closed and bounded (in the sense of the 
usual metric). Moreover, any subset 𝐶 that is 
compact in 𝒮 must be compact in 𝜏(𝐴), and these are 
exactly the bounded 𝒮-closed subsets that contain no 
strictly increasing sequence (Espelie and Joseph, 
1976). Hence, it is natural to ask for a 
characterization of compact subsets of 𝜏(𝐴). Such 
characterization must depend on 𝐴, of course. 

It is clear that a subset of 𝐴 is compact in 𝜏(𝐴) if 
and only if it is compact in 𝒰, and a subset of ℝ\𝐴 is 
compact in 𝜏(𝐴) if and only if it is compact in 𝒮. By 
taking finite unions of compact subsets of 𝐴 and ℝ\𝐴, 
one can trivially construct some compact subsets of 
𝜏(𝐴). While we are far from having a complete 
characterization of compact subsets of an 𝐻-space, 
we give an example of a compact subset that cannot 
be constructed in this way. 
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Example 1.6: Let 𝐴 = (−∞, 1], and consider the set 

𝐶 = [−3, −2] ∪ {1} ∪ {1 +
1

𝑛
: 𝑛 ∈ ℕ} in the space 

(ℝ, 𝜏(𝐴)). This is a compact subset. Note that 𝐶 ∩ 𝐴 is 
compact in 𝒰, yet 𝐶 ∩ ℝ\𝐴 is not compact in 𝒮, as it is 
not closed.  
 

A space 𝑋 is totally imperfect if every compact 
subspace of 𝑋 is countable. For example, the 
Sorgenfrey line is totally imperfect, while the real 
line is not. The following was proved in Bouziad and 
Sukhacheva (2017): “Space (ℝ, 𝜏(𝐴)) is totally 
imperfect if and only if 𝐴 is totally imperfect". This 
leads to the following results. 

 
Corollary 1.7: If 𝐴 is totally imperfect, then (ℝ, 𝜏(𝐴)) 
is not 𝜎-compact.  

 
Recall that a space 𝑋 is sequentially compact if 𝑋 is 

Hausdorff and any sequence of elements of 𝑋 has a 
convergent subsequence. Observe that since 𝒰 ⊂
𝜏(𝐴) for any ∅ = 𝐴 ⊂ ℝ and both are Hausdorff, then 
if a sequence (𝑥𝑛)𝑛∈ℕ converges to 𝑥 in (ℝ, 𝜏(𝐴)), 
then (𝑥𝑛)𝑛∈ℕ also converges to 𝑥 in (ℝ, 𝒰). Thus if 
𝑥𝑛 → 𝑥 in (ℝ, 𝒰), then 𝑥𝑛 → 𝑥 also in (ℝ, 𝜏(𝐴)). Any 
𝐻-space (ℝ, 𝜏(𝐴)) is not sequentially compact, and 
here is a counterexample. 
 
Example 1.8: Let 𝐴 be any non-empty proper subset 
of ℝ. Pick 𝑎 ∈ ℝ\𝐴. For each 𝑛 ∈ ℕ, pick 𝑎𝑛 ∈ ( 𝑎 −
1

𝑛
 , 𝑎 −

1

 𝑛+1 
 ). Then the sequence (𝑎𝑛)𝑛∈ℕ is an 

increasing sequence converges in (ℝ, 𝒰) to 𝑎. Then, 
any subsequence of (𝑎𝑛)𝑛∈ℕ must converge to 𝑎 in 
(ℝ, 𝒰), and if a subsequence of (𝑎𝑛)𝑛∈ℕ converges in 
(ℝ, 𝜏(𝐴)), then it must also converge to 𝑎. Since 𝑎 ∈
ℝ\𝐴, then any basic open neighborhood of 𝑎 is of the 
form [ 𝑎 , 𝑎 + 𝜖 ), where 𝜖 > 0. Since [ 𝑎 , 𝑎 + 𝜖 ) 
contains no elements of the sequence (𝑎𝑛)𝑛∈ℕ, we 
conclude no subsequence of (𝑎𝑛)𝑛∈ℕ is convergent to 
𝑎. Thus in (ℝ, 𝜏(𝐴)), the sequence (𝑎𝑛)𝑛∈ℕ has no 
convergent subsequence. Therefore, (ℝ, 𝜏(𝐴)) is not 
sequentially compact.  .1𝑖𝑛. 1𝑖𝑛. 

2. Product of two 𝑯-spaces 

Let 𝐴 and 𝐵 be any subsets of ℝ. Observe that we 
always have that (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is separable, 
just take 𝐷 = ℚ × ℚ, which is a countable dense 
subspace. Since (ℝ, 𝜏(𝐴)) is first countable for any 𝐴, 
then (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is first countable. Kulesza 
(2017) stated that “Space (ℝ, 𝜏(𝐴)) is second 
countable if and only if it is metrizable if and only if 
the set ℝ\𝐴 is countable". Hence, we may deduce the 
following. 

 
Theorem 2.1: For any subsets A and B of ℝ, the 
following statements are equivalent: 
 
1. The sets ℝ\𝐴 and ℝ\𝐵 are both countable.  
2. Space (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is second countable.  
3. Space (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is metrizable.  
 

Proof: If ℝ\𝐴 and ℝ\𝐵 are countable, then 
(ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is a product of two-second 
countable spaces and must be second countable. If 
(ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is second countable, then 
(ℝ, 𝜏(𝐴)) and (ℝ, 𝜏(𝐵)) are secondly countable, 
hence metrizable. Then, (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is 
metrizable. If (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is metrizable, 
then both (ℝ, 𝜏(𝐴)) and (ℝ, 𝜏(𝐵)) are metrizable. 
Hence, ℝ\𝐴 and ℝ\𝐵 are countable.  
 
Theorem 2.2: For any subsets 𝐴 and 𝐵 of  ℝ, space 
(ℝ, 𝜏(𝐴) ) × (ℝ, 𝜏(𝐵)) is neither compact nor 
countably compact, nor pseudocompact.  
 

Following Corollary 1.7, we have the next result. 
 
Corollary 2.3: If 𝐴 is totally imperfect, then 
( ℝ2 , 𝜏(𝐴) ) is not 𝜎-compact.  
 

When it comes to local compactness, it was also 
proved in Bouziad and Sukhacheva (2017) that “ The 
𝐻-space ( ℝ , 𝜏(𝐴) ) is locally compact if and only if 
ℝ\𝐴 is closed in (ℝ, 𝑈) and discrete in (ℝ, 𝒮)". This 
can be generalized to a finite product. However, it is 
important to note that this is not the case for an 
infinite product of 𝐻-spaces. By Engelking (1977), 
Theorem 3.3.13, we can deduce the following.  
 
Theorem 2.4: Space (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is locally 
compact if and only if 𝐴, 𝐵 ⊂ ℝ such that ℝ\𝐴 and 
ℝ\𝐵 are closed in (ℝ, 𝑈) and discrete in (ℝ, 𝒮).  
 

By Engelking (1977), Theorem 2.3.11, (ℝ, 𝜏(𝐴)) ×

(ℝ, 𝜏(𝐵)) is 𝑇𝑖  where 𝑖 ∈ {0,1,2,2
1

2
, 3,3

1

2
 }. There are 

some cases where (ℝ, 𝜏(𝐴)) × (ℝ , 𝜏(𝐵)) cannot be 
normal. In Chatyrko and Hattori (2013) Theorem 
2.1, it was proved that “ if 𝐴 is a closed countable 
subset of ℝ, then (ℝ , 𝜏(𝐴)) ≅ (ℝ , 𝒮)"; this result was 
further strengthened by Kulesza (2017) (Theorem 6) 
to give the following characterization: “(ℝ, 𝜏(𝐴)) is 
homeomorphic to the Sorgenfrey line if and only if 𝐴 
is scattered in (ℝ , 𝒰)". Since (ℝ2, 𝑆) is not normal 
(Steen et al., 1978), we reach the following result. 

 
Theorem 2.5: If 𝐴 and 𝐵 are scattered in (ℝ, 𝒰 ), 
then (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is not normal. 
 

Considering Jones’ lemma (Jones, 1937), here is 
another case where space (ℝ, 𝜏(𝐴)) × (ℝ , 𝜏(𝐵)) is 
not normal. It is, in fact, a generalization for the 
previous theorem. 

 
Theorem 2.6: Let A and B be subsets of  ℝ. If  ℝ\𝐴 
and ℝ\𝐵 both contain an interval, then (ℝ, 𝜏(𝐴)) ×
(ℝ, 𝜏(𝐵)) cannot be normal.  
 

Recall that a space 𝑋 is said to be 𝛼-normal if it is 
𝑇1 and for any pair of disjoint closed subsets, 𝐴 and 𝐵 
of 𝑋 there exist disjoint open subsets 𝑈 and 𝑉 such 
that 𝐴 ∩ 𝑈 is dense in 𝐴 and 𝐵 ∩ 𝑉 is dense in 𝐵, 
(Ludwig, 2002). Clearly, 𝑇4 implies 𝛼-normality. In 
Ludwig (2002), it was stated that “If 𝑋 is an 𝛼-
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normal space, then any two disjoint closed discrete 
subsets of 𝑋 can be separated by two disjoint open 
subsets of 𝑋". Hence, we have the following 
statement. 
 
Theorem 2.7: Let 𝐴 and 𝐵 be subsets of  ℝ. If  ℝ\𝐴 
and ℝ\𝐵 both contain an interval, then (ℝ, 𝜏(𝐴)) ×
(ℝ, 𝜏(𝐵)) cannot be 𝛼-normal.  
 
Proof: Assume, on the contrary, that (ℝ, 𝜏(𝐴)) ×
(ℝ, 𝜏(𝐵)) is 𝛼-normal, where ℝ\𝐴 and ℝ\𝐵 contain 
an interval. Let ( 𝑎, 𝑏 ) ⊆ ℝ\𝐴 and ( 𝑐, 𝑑 ) ⊆ ℝ\𝐵. Let 
𝐶 be any line segment in ( 𝑎, 𝑏 ) × ( 𝑐, 𝑑 ) with a 
negative slope. By Jones’ Lemma, pick two disjoint 
subsets 𝐸 and 𝐹 of 𝐶 that cannot be separated by two 
disjoint open sets. Since 𝐶 is closed and discrete in 
(ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)), then so are 𝐸 and 𝐹. This 
contradicts the assumption. Thus, (ℝ, 𝜏(𝐴)) ×
(ℝ, 𝜏(𝐵)) is not 𝛼-normal.  
 
Theorem 2.8: If ( ℝ , 𝜏(𝐴) ) × ( ℝ , 𝜏(𝐵) ) is Lindelöf 
or paracompact, then it is normal.  
 

Furthermore, since (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is 
always separable, we get the following result. 
 
Theorem 2.9: For any subsets, 𝐴 and 𝐵 of  ℝ, 
(ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is paracompact if and only if it 
is Lindelöf. 

 
The question “under what condition is the product 

of two normal spaces normal?" has been studied by 
many topologists. Partial answers to this question 
have been found. We apply some of those results to 
give explore when space (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is 
normal. By Theorem 2.1, we know that if 𝐴 and 𝐵 are 
subsets of ℝ with countable complements, then 
(ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is paracompact (and normal). 
However, observing that the product of a metrizable 
space and a perfectly normal space is paracompact 
and perfectly normal (Michael (1953), Proposition 
5), we actually have the following “strengthening" of 
this statement. 
 
Theorem 2.10: If 𝐴 and 𝐵 are subsets of  ℝ with ℝ\𝐴 
countable, then (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is perfectly 
normal and paracompact. 
 

Morita (1963) proved that “the product of a 
paracompact space which is a countable union of 
locally compact closed subsets, and a paracompact 
space is paracompact." Together with the 
paracompactness of every 𝐻-space we may deduce 
the following result. 

 
Theorem 2.11: If 𝐴 and 𝐵 are non-empty proper 
subsets of  ℝ such that (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is not 
normal, then both (ℝ, 𝜏(𝐴)) and (ℝ, 𝜏(𝐵)) are not a 
countable union of locally compact closed subsets.  

 
On the other hand, in Bouziad and Sukhacheva 

(2017), it was proved that “The 𝐻-space ( ℝ , 𝜏(𝐴) ) is 
locally compact if and only if ℝ\𝐴 is closed in (ℝ, 𝑈) 

and discrete in (ℝ, 𝒮)." Thus, we get the following 
results. 

 
Theorem 2.12: If 𝐴 and 𝐵 are non-empty proper 
subsets of  ℝ such that ℝ\𝐴 is closed in (ℝ, 𝑈) and 
discrete in (ℝ, 𝑆), then (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is 
paracompact (and normal). 

 
Observe that, so far, all the normal products 

(ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) which we have presented 
happen to be paracompact (Lindelöf). The question 
of whether there is a choice for subsets 𝐴 and 𝐵 of ℝ 
such that (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is normal but not 
paracompact (Lindelöf) is still open. 

Recall that a topological space 𝑋 is called  𝐿-
normal if there exists a normal space 𝑌 and a 
bijective function 𝑓: 𝑋 ⟶ 𝑌 such that the restriction 
𝑓 ↾𝐴: 𝐴 ⟶ 𝑓(𝐴) is a homeomorphism for each 
Lindelöf subspace 𝐴 ⊆ 𝑋 (Kalantan and Saeed, 
2017). In [12, Theorem 1.6], it was proved that “If 𝑋 
is 𝑇3 separable 𝐿-normal and of countable tightness, 
then 𝑋 is 𝑇4.". Note that ( ℝ , 𝜏(𝐴) ) × ( ℝ , 𝜏(𝐵) ) is of 
countable tightness, 𝑇3 and separable. Hence, we 
have the following theorem. 

 
Theorem 2.13: For any subsets, 𝐴 and 𝐵 of ℝ, 
(ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is 𝐿-normal if and only if 
(ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is 𝑇4. 

 
Recall that a topological space 𝑋 is called 𝑆-

normal if there exists a normal space 𝑌 and a 
bijective function 𝑓: 𝑋 ⟶ 𝑌 such that the restriction 
𝑓 ↾𝐴: 𝐴 ⟶ 𝑓(𝐴) is a homeomorphism for each 
separable subspace 𝐴 ⊆ 𝑋 (Kalantan and 
Alhomieyed, 2018). Since (ℝ, 𝜏(𝐴)) × (ℝ , 𝜏(𝐵)) is 
separable, the following is clear. 

 
Theorem 2.14: For any subsets, 𝐴 and 𝐵 of ℝ, 
(ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is 𝑆-normal if and only if 
(ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is 𝑇4. 

 
Recall that a topological space 𝑋 is called 𝐶-

normal if there exists a normal space 𝑌 and a 
bijective function 𝑓: 𝑋 ⟶ 𝑌 such that the restriction 
𝑓 ↾𝐴: 𝐴 ⟶ 𝑓(𝐴) is a homeomorphism for each 
compact subspace 𝐴 ⊆ 𝑋, (AlZahrani and Kalantan, 
2017). If 𝑌 is paracompact, 𝑋 is called 𝐶2-
paracompact, (Mohammed et al., 2019). For any 
subsets 𝐴 and 𝐵 of ℝ, we always have ( ℝ , 𝜏(𝐴) ) ×
( ℝ , 𝜏(𝐵) ) is submetrizable. Since every 
submetrizable space is 𝐶2-paracompact (Mohammed 
et al., 2019), we deduce the following result. 

 
Theorem 2.15: For any subsets 𝐴 and 𝐵 of ℝ, the 
spaces (ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is 𝐶-normal and 𝐶2-
paracompact.  

 
Recall that a topological space 𝑋 is called 𝐶𝐶-

normal, (Kalantan and Alhomieyed, 2017), if there 
exists a normal space 𝑌 and a bijective function 
𝑓: 𝑋 ⟶ 𝑌 such that the restriction 𝑓 ↾𝐴: 𝐴 ⟶ 𝑓(𝐴) is 
a homeomorphism for each countably compact 
subspace 𝐴 ⊆ 𝑋. We have the following theorem. 
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Theorem 2.16: Let 𝜏1 and 𝜏2 be any topologies on ℝ, 
both finer than 𝒰. Then, (ℝ, 𝜏1) × (ℝ, 𝜏2) is 𝐶𝐶-
normal. 
 
Proof: Consider ℝ2 with its usual metric topology. 
Consider 𝑖𝑑: (ℝ, 𝜏1) × (ℝ, 𝜏2) ⟶ ( ℝ2, 𝒰). It is 
continuous because the usual metric is coarser than 
the product of 𝜏1 and 𝜏2. Let 𝐴 be any countably 
compact subspace of (ℝ, 𝜏1) × (ℝ, 𝜏2). By continuity, 
𝐴 is countably compact in the metric space ( ℝ2 , 𝒰 ), 
hence 𝐴 is closed in ( ℝ2 , 𝒰 ). For the same reason 
𝑖𝑑: (𝐴, 𝜏1 × 𝜏2) ⟶ (𝐴, 𝒰 ) is a homeomorphism as it 
is a bijection, continuous and closed: any closed 
subset 𝐸 of 𝐴 in 𝜏1 × 𝜏2 is countably compact 
(countable compactness is hereditary with respect to 
closed subspaces), thus 𝑖𝑑(𝐸) = 𝐸 is countably 
compact in the metric space ( 𝐴 , 𝒰 ), thus compact, 
hence closed. 
 
Corollary 2.17: For any 𝐴 and 𝐵 subsets of ℝ, 
(ℝ, 𝜏(𝐴)) × (ℝ, 𝜏(𝐵)) is 𝐶𝐶-normal. 
 

Recall that a subset 𝐶 of a topological space 𝑋 is 

called a closed domain if 𝐶 = i𝑛𝑡(𝐶), i.e., 𝐶 equals to 
the closure of its interior. We denote the family of all 
closed domains in 𝑋 by 𝑅[𝑋]. A 𝜅-metric on a 𝑇3 
space is a non-negative real-valued function 𝜙(𝑥, 𝐶) 
of two variables, 𝑥 ∈ 𝑋 and 𝐶 ∈ 𝑅[𝑋], with the 
requirements: 
 
 For every 𝑥 ∈ 𝑋 and 𝐶 ∈ 𝑅[𝑋], 𝜙(𝑥, 𝐶) = 0 ⇔ 𝑥 ∈

𝐶.  
 If 𝐶, 𝐶′ ∈ 𝑅[𝑋] and 𝐶 ⊂ 𝐶′, then 𝜙(𝑥, 𝐶) ≥ 𝜙(𝑥, 𝐶′), 

for all 𝑥 ∈ 𝑋.  
 For every 𝐶 ∈ 𝑅[𝑥], 𝜙(𝑥, 𝐶) is continuous in 𝑥.  
 For every increasing transfinite sequence {𝐶𝛼 ∈

𝑅[𝑋]: 𝛼 ∈ Λ }, we have:  
 

𝜙 (𝑥, ⋃

𝛼∈Λ

𝐶𝛼) = inf{𝜙(𝑥, 𝐶𝛼): 𝛼 ∈ Λ} 

 

Space on which there exists a 𝜅-metric on it is 
said to be 𝜅-metrizable (Ščepin, 1980). The concept 
of 𝜅-metrizability is a generalization of metrizability, 
in the sense that every metric induces a 𝜅-metric, so 
every metrizable space is 𝜅-metrizable. In particular, 
(ℝ, 𝑈) is 𝜅-metrizable.  

The Sorgenfrey line is not metrizable, but it is 𝜅-
metrizable. Ščepin (1980) defined a 𝜅-metric on the 
Sorgenfrey line as follows: Start by defining a 
bounded distance 𝑑(𝑥, 𝑦) = min{1, |𝑥 − 𝑦|} for each 
𝑥, 𝑦 ∈ ℝ, and for each 𝑥 ∈ ℝ, ∅ ≠ 𝐸 ⊆ ℝ, define 
𝑑(𝑥, 𝐸) = inf{𝑑(𝑥, 𝑦): 𝑦 ∈ 𝐸}, and for each 𝑥 ∈ ℝ let 
𝑑(𝑥, ∅) = 1. Now, define 𝜙: 𝑋 × 𝑅[𝑋] → ℝ by the 
relation 𝜙(𝑥, 𝐶) = 𝑑(𝑥, 𝐶 ∩ [𝑥, ∞)). With this 
definition, 𝜙 is a 𝜅- metric on (ℝ, 𝑆), see (Suzuki et 
al., 1989) for more details. 

It is unknown whether the 𝐻-topology 𝜏(𝐴) on ℝ 
is 𝜅-metrizable. However, neither the usual metric 
nor 𝜙 as defined above can be used to define a 𝜅-
metric on (ℝ, 𝜏(𝐴)). The usual metric 𝑚: (ℝ, 𝜏(𝐴)) ×
𝑅[ℝ] → [0, ∞) defined by 𝑚(𝑥, 𝐶) = 𝑑(𝑥, 𝐶) fails to 

satisfy (K1), for a counter-example, we may take 𝐴 =
(−∞, 0), choose 𝐶 = [1,2). In this case, 𝑚(2, 𝐶) = 0 
while 2 ∉ 𝐶. While it is easy to check that 
𝜙: (ℝ, 𝜏(𝐴)) × 𝑅[ℝ] → [0, ∞) as defined previously 
satisfies (K1), (K2) and (K4); continuity of 𝜙 cannot 
be guaranteed. Here is an example.  
 
Example 2.18: Let 𝐴 = (−∞, 4), choose 𝐶 = [1,2]. 
Considering (ℝ, 𝜏(𝐴)), we have int(𝐶) = (1,2) and 

(1,2) = [1,2] = 𝐶. Hence, 𝐶 ∈ 𝑅[𝑋]. Let 𝑥 = 2. We 
show 𝜙 is discontinuous at 𝑥. 
 

Assume, on the contrary, that 𝜙 is continuous at 
𝑥 = 2. Observe that 𝜙(2, 𝐶) = 0 because 2 ∈ 𝐶. 
Consider [0, 𝜖) with 0 < 𝜖 < 1, an open 
neighborhood of 0 = 𝜙(2). Then, by assumed 
continuity at 2, there exists 𝛿 > 0 such that for all 
𝑦 ∈ (2 − 𝛿, 2 + 𝛿), we have 𝜙(𝑦, 𝐶) ∈ [0, 𝜖). 
However, for each 𝑦 ∈ (2,2 + 𝛿), we have 𝜙(𝑦, 𝐶) =
𝑑(𝑦, 𝐶 ∩ [𝑦, ∞)) = 𝑑(𝑦, [1,2] ∩ [𝑦, ∞) = 𝑑(𝑦, ∅) =
1 ∉ [0, 𝜖), and (2,2 + 𝛿) ⊂ (2 − 𝛿, 2 + 𝛿), a 
contradiction. Thus, 𝜙 is discontinuous at 𝑥 = 2 and 
is not a 𝜅-metric on (ℝ, 𝜏(𝐴)).  .1𝑖𝑛. 1𝑖𝑛. 

 
An interesting property of 𝜅-metrizable spaces is 

that any product of 𝜅-metrizable spaces is 𝜅-normal. 
That is, any two disjoint closed domains could be 
separated by disjoint open sets (Ščepin, 1980). It is 
clear that every 𝑇4 space is 𝜅-normal, so this is a 
weaker version of normality. Hence, we are 
interested in 𝜅-metrizablity of the general 𝐻-space 
and 𝜅-normality of the non-normal products of 𝐻-
spaces. 

3. Conclusion 

We have presented some of the topological 
properties of the product of two H-spaces. But, these 
problems are still open: 

 
1. Can the product of two H-spaces be normal yet 

not paracompact (equivalently, not Lindelöf)?  
2. If the product of two H-spaces is not normal, is it 

k-normal? 
3. If the product of two H-spaces is not normal, is it 

α-normal? 
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