International Journal of

ADVANCED AND APPLIED SCIENCES

EISSN: 2313-3724, Print ISSN: 2313-626X

Frequency: 12

line decor
  
line decor

 Volume 7, Issue 5 (May 2020), Pages: 87-97

----------------------------------------------

 Original Research Paper

 Title: A hyperbolic penalty method to solve structured convex minimization problems

 Author(s): Abdelouahed Hamdi 1, Temadher K. Al-Maadeed 1, *, Akram Taati 2

 Affiliation(s):

 1Department of Mathematics, Statistics, and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar
 2Department of Mathematics, University of Guilan, Rasht, Iran

  Full Text - PDF          XML

 * Corresponding Author. 

  Corresponding author's ORCID profile: https://orcid.org/0000-0003-1950-8907

 Digital Object Identifier: 

 https://doi.org/10.21833/ijaas.2020.05.011

 Abstract:

This paper presents a decomposition algorithm based on the smooth hyperbolic penalty, which leads to a scheme suitable for parallelized computations. The proposed algorithm can be seen as a separable version of the earlier hyperbolic penalty method built, and its main idea is related to a penalty-type scheme mixed with a kind of resource allocation approach to decompose large scale separable constrained minimization programs. 

 © 2020 The Authors. Published by IASE.

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 Keywords: Hyperbolic penalty methods, Decomposition, Convex functions, Large scale optimization

 Article History: Received 1 December 2019, Received in revised form 15 February 2020, Accepted 20 February 2020

 Acknowledgment:

No Acknowledgment.

 Compliance with ethical standards

 Conflict of interest: The authors declare that they have no conflict of interest.

 Citation:

 Hamdi A, Al-Maadeed TK, and Taati A (2020). A hyperbolic penalty method to solve structured convex minimization problems. International Journal of Advanced and Applied Sciences, 7(5): 87-97

 Permanent Link to this page

 Figures

 Fig. 1 

 Tables

 Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 

 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 

----------------------------------------------

 References (21) 

  1. Bertsekas DP and Tsitsiklis JN (1989). Parallel and distributed computation: Numerical methods. Volume 23, Prentice-Hall, Englewood Cliffs, USA.   [Google Scholar]
  2. Breitfeld MG and Shanno DF (1996). Computational experience with penalty-barrier methods for nonlinear programming. Annals of Operations Research, 62(1): 439-463. https://doi.org/10.1007/BF02206826   [Google Scholar]
  3. MathWorks (2018). Optimization toolbox for use with MATLAB: Users guide. The MathWorks Inc., Natick, Massachusetts, USA.   [Google Scholar]
  4. Evirgen F (2017). Solution of a class of optimization problems based on hyperbolic penalty dynamic framework. Acta Physica Polonica A, 132: 1062-1065. https://doi.org/10.12693/APhysPolA.132.1062   [Google Scholar]
  5. Fiacco AV and McCormick GP (1990). Nonlinear programming: Sequential unconstrained minimization techniques. Volume 4, SIAM, Philadelphia, USA. https://doi.org/10.1137/1.9781611971316   [Google Scholar]
  6. Fletcher R (1975). An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics, 15(3): 319-342. https://doi.org/10.1093/imamat/15.3.319   [Google Scholar]
  7. Grant M and Boyd S (2014). CVX: Matlab software for disciplined convex programming. Version 2.1. Available online at: https://bit.ly/2WzKf7U
  8. Grant MC and Boyd SP (2020). The CVX users guide. CVX research Inc., Cambridge, UK. Available online at: https://bit.ly/3dj7RUh
  9. Hamdi A (2005a). Two-level primal–dual proximal decomposition technique to solve large scale optimization problems. Applied Mathematics and Computation, 160(3): 921-938. https://doi.org/10.1016/j.amc.2003.11.040   [Google Scholar]
  10. Hamdi A (2005b). Decomposition for structured convex programs with smooth multiplier methods. Applied Mathematics and Computation, 169(1): 218-241. https://doi.org/10.1016/j.amc.2004.10.079   [Google Scholar]
  11. Hamdi A and Mahey P (2000). Separable diagonalized multiplier method for decomposing nonlinear programs. Computational and Applied Mathematics, 19(1): 1-29.   [Google Scholar]
  12. Hamdi A and Mishra SK (2011). Decomposition methods based on augmented Lagrangians: A survey. In: Mishra S (Eds.), Topics in nonconvex optimization: 175-203. Volume 50, Springer, New York, USA. https://doi.org/10.1007/978-1-4419-9640-4_11   [Google Scholar]
  13. Hamdi A, Mahey P, and Dussault JP (1997). A new decomposition method in nonconvex programming via a separable augmented Lagrangian. In: Gritzmann P, Horst R, Sachs E, and Tichatschke R (Eds), Recent advances in optimization: 90-104. Volume 452, Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-59073-3_7   [Google Scholar]
  14. Kort BW and Bertsekas DP (1976). Combined primal–dual and penalty methods for convex programming. SIAM Journal on Control and Optimization, 14(2): 268-294. https://doi.org/10.1137/0314020   [Google Scholar]
  15. Lasdon LS (1970). Optimization theory for large system. MacMillan, New York, USA.   [Google Scholar]
  16. Melo T, Monteiro MTT, and Matias J (2011). Solving MPCC problem with the hyperbolic penalty function. In the AIP Conference Proceedings, American Institute of Physics, 1389: 763-766. https://doi.org/10.1063/1.3636844   [Google Scholar]
  17. Melo T, Monteiro MTT, and Matias J (2012). Solving a signalized traffic intersection problem with a hyperbolic penalty function. In the AIP Conference Proceedings, American Institute of Physics, 1479 (1): 830-833. https://doi.org/10.1063/1.4756266   [Google Scholar]
  18. Polyak RA (2001). Log-Sigmoid multipliers method in constrained optimization. Annals of Operations Research, 101(1-4): 427-460. https://doi.org/10.1023/A:1010938423538   [Google Scholar]
  19. Rockafellar RT (1970). Convex analysis. Princeton University Press, Princeton, USA. https://doi.org/10.1515/9781400873173   [Google Scholar]
  20. Rockafellar RT (1976). Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of Operations Research, 1(2): 97-116. https://doi.org/10.1287/moor.1.2.97   [Google Scholar]
  21. Xavier AE (2001). Hyperbolic penalty: A new method for nonlinear programming with inequalities. International Transactions in Operational Research, 8(6): 659-671. https://doi.org/10.1111/1475-3995.t01-1-00330   [Google Scholar]